94 resultados para Whitehall II
Resumo:
Part I
The latent heat of vaporization of n-decane is measured calorimetrically at temperatures between 160° and 340°F. The internal energy change upon vaporization, and the specific volume of the vapor at its dew point are calculated from these data and are included in this work. The measurements are in excellent agreement with available data at 77° and also at 345°F, and are presented in graphical and tabular form.
Part II
Simultaneous material and energy transport from a one-inch adiabatic porous cylinder is studied as a function of free stream Reynolds Number and turbulence level. Experimental data is presented for Reynolds Numbers between 1600 and 15,000 based on the cylinder diameter, and for apparent turbulence levels between 1.3 and 25.0 per cent. n-heptane and n-octane are the evaporating fluids used in this investigation.
Gross Sherwood Numbers are calculated from the data and are in substantial agreement with existing correlations of the results of other workers. The Sherwood Numbers, characterizing mass transfer rates, increase approximately as the 0.55 power of the Reynolds Number. At a free stream Reynolds Number of 3700 the Sherwood Number showed a 40% increase as the apparent turbulence level of the free stream was raised from 1.3 to 25 per cent.
Within the uncertainties involved in the diffusion coefficients used for n-heptane and n-octane, the Sherwood Numbers are comparable for both materials. A dimensionless Frössling Number is computed which characterizes either heat or mass transfer rates for cylinders on a comparable basis. The calculated Frössling Numbers based on mass transfer measurements are in substantial agreement with Frössling Numbers calculated from the data of other workers in heat transfer.
Resumo:
I. Alkaline phosphatase activity in the developing sea urchin Lytechinus pictus has been investigated with respect to intensity at various stages, ionic requirements and intracellular localization. The activity per embryo remains the same in the unfertilized egg, fertilized egg and cleavage stages. At a time just prior to gastrulation (about 10 hours after fertilization) the activity per embryo begins to rise and increases after 300 times over the activity in the cleavage stages during the next 60 hours.
The optimum ionic strength for enzymatic activity shows a wide peak at 0.6 to 1.0. Calcium and magnesium show an additional optimum at a concentration in the range of 0.02 to 0.07 molar. EDTA at concentrations of 0.0001 molar and higher shows a definite inhibition of activity.
The intracellular localization of alkaline phosphatase in homogenates of 72-hour embryos has been studied employing the differential centrifugation method. The major portion of the total activity in these homogenates was found in mitochondrial and microsomal fractions with less than 5% in the nuclear fraction and less than 2% in the final supernatant. The activity could be released from all fractions by treatment with sodium deoxycholate.
II. The activation of protein biosynthesis at fertilization in eggs of the sea urchins Lytechinus pictus and Strongylocentrotus purpuratus has been studied in both intact eggs and cell-free homogenates. It is shown that homogenates from both unfertilized and fertilized eggs are dependent on potassium and magnesium ions for optimum amino acid incorporation activity and in the case of the latter the concentration range is quite narrow. Though the optimum magnesium concentrations appear to differ slightly in homogenates of unfertilized and fertilized eggs, in no case was it observed that unfertilized egg homogenates were stimulated to incorporate at a level comparable to that of the fertilized eggs.
An activation of amino acid incorporation into protein has also been shown to occur in parthenogenetically activated non-nucleate sea urchin egg fragments or homogenates thereof. This activation resembles that in the fertilized whole egg or fragment both in amount and pattern of activation. Furthermore, it is shown that polyribosomes form in these non-nucleate fragments upon artificial activation. These findings are discussed along with possible mechanisms for activation of the system at fertilization.
Resumo:
I. THE CRYSTAL STRUCTURE OF A NEW DIMER OF TRIPHENYLFLUOROCYCLOBUTADIENE
The crystal structure of thermal isomer of the “head-to-head” dimer of triphenylfluorocyclobutadiene was determined by the direct method. The Σ2 relationship involving the low angle reflections with the largest E’s were found and solved for the signs by the symbolic method of Zachariasen. The structure was seen in the electron density map and the E-map, and was refined antisotropically by the method of least squares. The residual R was 0.065.
The structure is a gem-difluorohexaphenyldihydropentalene. All of the phenyl groups are planar as it is the cyclopentadiene ring of the dihydropentalene skeleton. Overcrowding at the position of the flourines causes some deviations from the normal bond angles in the cyclopentene ring.
The list of observed and calculated structure factors on pages 32-34 will not be legible on the microfilm. Photographic copies may be obtained from the California Institute of Technology.
II. A LOW TEMPERATURE REFINEMENT OF THE CYANURIC TRIAZIDE STRUCTURE
The structure of cyanuric triazide was refined anisotropically by the method of least squares. Three-dimensional intensity data, which has been collected photographically with MoKα radiation at -110˚C, were used in the refinement. The residual R was reduced to 0.081.
The structure is completely planar, and there is no significant bond alternation in the cyanuric ring. The packing of the molecules causes the azide groups to deviate from linearity by 8 degrees.
Resumo:
Conformational equilibrium in medium-sized rings has been investigated by the temperature variation of the fluorine-19 n.m.r. spectra of 1, 1-difluorocycloalkanes and various substituted derivatives of them. Inversion has been found to be fast on the n.m.r. time scale at -180˚ for 1, 1-difluorocycloheptane, but slow for 1, 1-difluoro-4, 4-dimethylcycloheptane at -150˚. At low temperature, the latter compound affords a single AB pattern with a chemical-shift difference of 841 cps. which has been interpreted in terms of the twist-chair conformation with the methyl groups on the axis position and the fluorine atoms in the 4-position. At room temperature, the n.m.r. spectrum of 1, 1-difluoro-4-t-butylcycloheptane affords an AB pattern with a chemical-shift difference of 185 cps. The presence of distinct trans and gauche couplings from the adjacent hydrogens has been interpreted to suggest the existence of a single predominant form, the twist chair with the fluorine atoms on the axis position.
Investigation of 1, 1-difluorocycloöctane and 1, 1, 4, 4-tetrafluorocycloöctane has led to the detection of two kinetic processes both having activation energies of 8-10 kcal./mole but quite different A values. In light of these results eleven different conformations of cycloöctane along with a detailed description of the ways in which they may be interconverted are discussed. An interpretation involving the twist-boat conformation rapidly equilibrating through the saddle and the parallel-boat forms at room temperature is compatible with the results.
Resumo:
The structural specificity of α-chymotrypsin for polypeptides and denatured proteins has been examined. The primary specificity of the enzyme for these natural substrates is shown to closely correspond to that observed for model substrates. A pattern of secondary specificity is proposed.
A series of N-acetylated peptide esters of varying length have been evaluated as substrates of α-chymotrypsin. The results are interpreted in terms of proposed specificity theories.
The α-chymotrypsin-catalyzed hydrolyses of a number of N-acetylated dipeptide methyl esters were studied. The results are interpreted in terms of the available specificity theories and are compared with results obtained in the study of polypeptide substrates. The importance of non-productive binding in determining the kinetic parameters of these substrates is discussed. A partial model of the locus of the active site which interacts with the R’1CONH- group of a substrate of the form R’1CONHCHR2COR’3 is proposed.
Finally, some reactive esters of N-acetylated amino acids have been evaluated as substrates of α-chymotrypsin. Their reactivity and stereo-chemical behavior are discussed in terms of the specificity theories available. The importance of a binding interaction between the carboxyl function of the substrate and the enzyme is suggested by the results obtained.
Resumo:
Part I
The electric birefringence of dilute DNA solutions has been studied in considerable detail and on a large number of samples, but no new and reliable information was discovered concerning the tertiary structure of DNA. The large number of variables which effect the birefringence results is discussed and suggestions are made for further work on the subject.
The DNA molecules have been aligned in a rapidly alternating (10 to 20 kc/sec) square wave field confirming that the orientation mechanism is that of counterion polarization. A simple empirical relation between the steady state birefringence, Δnst, and the square of the electric field, E, has been found: Δnst = E2/(a E2 + b), where a = 1/Δns and b = (E2/Δnst)E→o. Δns is the birefringence extrapolated to infinite field strength.
The molecules show a distribution of relaxation times from 10-4 to 0.2 sec, which is consistent with expectations for flexible coil molecules. The birefringence and the relaxation times decrease with increasing salt concentrations. They also depend on the field strength and pulse duration in a rather non-reproducible manner, which may be due in part to changes in the composition of the solution or in the molecular structure of the DNA (other than denaturation). Further progress depends on the development of some control over these effects.
Part II
The specificity of the dissociation of reconstituted and native deoxyribonucleohistones (DNH) by monovalent salt solutions has been investigated. A novel zone ultracentrifugation method is used in which the DNH is sedimented as a zone through a preformed salt gradient, superimposed on a stabilizing D2O (sucrose) density gradient. The results, obtained by scanning the quartz sedimentation tubes in a spectrophotometer, were verified by the conventional, preparative sedimentation technique. Procedures are discussed for the detection of microgram quantities of histones, since low concentrations must be used to prevent excessive aggregation of the DNH.
The data show that major histone fractions are selectively dissociated from DNH by increasing salt concentrations: Lysine rich histone (H I) dissociates gradually between 0.1 and 0.3 F, slightly lysine rich histone (H II) dissociates as a narrow band between 0.35 and 0.5 F, and arginine rich histone (H III, H IV) dissociates gradually above 0.5 F NaClO4.
The activity of the partially dissociated, native DNH in sustaining RNA synthesis, their mobility and their unusual heat denaturation and renaturation behavior are described. The two-step melting behavior of the material indicates that the histones are non-randomly distributed along the DNA, but the implications are that the uncovered regions are not of gene-size length.
Resumo:
Part I: The mobilities of photo-generated electrons and holes in orthorhombic sulfur are determined by drift mobility techniques. At room temperature electron mobilities between 0.4 cm2/V-sec and 4.8 cm2/V-sec and hole mobilities of about 5.0 cm2/V-sec are reported. The temperature dependence of the electron mobility is attributed to a level of traps whose effective depth is about 0.12 eV. This value is further supported by both the voltage dependence of the space-charge-limited, D.C. photocurrents and the photocurrent versus photon energy measurements.
As the field is increased from 10 kV/cm to 30 kV/cm a second mechanism for electron transport becomes appreciable and eventually dominates. Evidence that this is due to impurity band conduction at an appreciably lower mobility (4.10-4 cm2/V-sec) is presented. No low mobility hole current could be detected. When fields exceeding 30 kV/cm for electron transport and 35 kV/cm for hole transport are applied, avalanche phenomena are observed. The results obtained are consistent with recent energy gap studies in sulfur.
The theory of the transport of photo-generated carriers is modified to include the case of appreciable thermos-regeneration from the traps in one transit time.
Part II: An explicit formula for the electric field E necessary to accelerate an electron to a steady-state velocity v in a polarizable crystal at arbitrary temperature is determined via two methods utilizing Feynman Path Integrals. No approximation is made regarding the magnitude of the velocity or the strength of the field. However, the actual electron-lattice Coulombic interaction is approximated by a distribution of harmonic oscillator potentials. One may be able to find the “best possible” distribution of oscillators using a variational principle, but we have not been able to find the expected criterion. However, our result is relatively insensitive to the actual distribution of oscillators used, and our E-v relationship exhibits the physical behavior expected for the polaron. Threshold fields for ejecting the electron for the polaron state are calculated for several substances using numerical results for a simple oscillator distribution.
Resumo:
I. Nuclear magnetic resonance spectra of appropriately substituted ferrocenylcarbonium ions reveal the α-protons of the substituted ring to be more shielded than β-protons. The observation is discussed in terms of various models proposed for the ferrocenylcarbonium ion and is found to support a model in which the iron is bonded to all six carbona of the substituted ring.
II. Ferrocene catalyzes the photoisomerization of the piperylenes and the photodimerization of isoprene. Our results suggest a mechanism in which a complex of ferrocene and diene is excited to its second singlet state which dissociates to a triplet-state ferrocene molecule and a triplet-state diene molecule. The triplet-state diene, then, proceeds to isomerize or attack ground-state diene to form dimers.
Resumo:
Part I.
The interaction of a nuclear magnetic moment situated on an internal top with the magnetic fields produced by the internal as well as overall molecular rotation has been derived following the method of Van Vleck for the spin-rotation interaction in rigid molecules. It is shown that the Hamiltonian for this problem may be written
HSR = Ῑ · M · Ĵ + Ῑ · M” · Ĵ”
Where the first term is the ordinary spin-rotation interaction and the second term arises from the spin-internal-rotation coupling.
The F19 nuclear spin-lattice relaxation time (T1) of benzotrifluoride and several chemically substituted benzotrifluorides, have been measured both neat and in solution, at room temperature by pulsed nuclear magnetic resonance. From these experimental results it is concluded that in benzotrifluoride the internal rotation is crucial to the spin relaxation of the fluorines and that the dominant relaxation mechanism is the fluctuating spin-internal-rotation interaction.
Part II.
The radiofrequency spectrum corresponding to the reorientation of the F19 nuclear moment in flurobenzene has been studied by the molecular beam magnetic resonance method. A molecular beam apparatus with an electron bombardment detector was used in the experiments. The F19 resonance is a composite spectrum with contributions from many rotational states and is not resolved. A detailed analysis of the resonance line shape and width by the method of moments led to the following diagonal components of the fluorine spin-rotational tensor in the principal inertial axis system of the molecule:
F/Caa = -1.0 ± 0.5 kHz
F/Cbb = -2.7 ± 0.2 kHz
F/Ccc = -1.9 ± 0.1 kHz
From these interaction constants, the paramagnetic contribution to the F19 nuclear shielding in C6H5F was determined to be -284 ± ppm. It was further concluded that the F19 nucleus in this molecule is more shielded when the applied magnetic field is directed along the C-F bond axis. The anisotropy of the magnetic shielding tensor, σ” - σ⊥, is +160 ± 30 ppm.
Resumo:
I. The attenuation of sound due to particles suspended in a gas was first calculated by Sewell and later by Epstein in their classical works on the propagation of sound in a two-phase medium. In their work, and in more recent works which include calculations of sound dispersion, the calculations were made for systems in which there was no mass transfer between the two phases. In the present work, mass transfer between phases is included in the calculations.
The attenuation and dispersion of sound in a two-phase condensing medium are calculated as functions of frequency. The medium in which the sound propagates consists of a gaseous phase, a mixture of inert gas and condensable vapor, which contains condensable liquid droplets. The droplets, which interact with the gaseous phase through the interchange of momentum, energy, and mass (through evaporation and condensation), are treated from the continuum viewpoint. Limiting cases, for flow either frozen or in equilibrium with respect to the various exchange processes, help demonstrate the effects of mass transfer between phases. Included in the calculation is the effect of thermal relaxation within droplets. Pressure relaxation between the two phases is examined, but is not included as a contributing factor because it is of interest only at much higher frequencies than the other relaxation processes. The results for a system typical of sodium droplets in sodium vapor are compared to calculations in which there is no mass exchange between phases. It is found that the maximum attenuation is about 25 per cent greater and occurs at about one-half the frequency for the case which includes mass transfer, and that the dispersion at low frequencies is about 35 per cent greater. Results for different values of latent heat are compared.
II. In the flow of a gas-particle mixture through a nozzle, a normal shock may exist in the diverging section of the nozzle. In Marble’s calculation for a shock in a constant area duct, the shock was described as a usual gas-dynamic shock followed by a relaxation zone in which the gas and particles return to equilibrium. The thickness of this zone, which is the total shock thickness in the gas-particle mixture, is of the order of the relaxation distance for a particle in the gas. In a nozzle, the area may change significantly over this relaxation zone so that the solution for a constant area duct is no longer adequate to describe the flow. In the present work, an asymptotic solution, which accounts for the area change, is obtained for the flow of a gas-particle mixture downstream of the shock in a nozzle, under the assumption of small slip between the particles and gas. This amounts to the assumption that the shock thickness is small compared with the length of the nozzle. The shock solution, valid in the region near the shock, is matched to the well known small-slip solution, which is valid in the flow downstream of the shock, to obtain a composite solution valid for the entire flow region. The solution is applied to a conical nozzle. A discussion of methods of finding the location of a shock in a nozzle is included.
Resumo:
Part I
Solutions of Schrödinger’s equation for system of two particles bound in various stationary one-dimensional potential wells and repelling each other with a Coulomb force are obtained by the method of finite differences. The general properties of such systems are worked out in detail for the case of two electrons in an infinite square well. For small well widths (1-10 a.u.) the energy levels lie above those of the noninteresting particle model by as much as a factor of 4, although excitation energies are only half again as great. The analytical form of the solutions is obtained and it is shown that every eigenstate is doubly degenerate due to the “pathological” nature of the one-dimensional Coulomb potential. This degeneracy is verified numerically by the finite-difference method. The properties of the square-well system are compared with those of the free-electron and hard-sphere models; perturbation and variational treatments are also carried out using the hard-sphere Hamiltonian as a zeroth-order approximation. The lowest several finite-difference eigenvalues converge from below with decreasing mesh size to energies below those of the “best” linear variational function consisting of hard-sphere eigenfunctions. The finite-difference solutions in general yield expectation values and matrix elements as accurate as those obtained using the “best” variational function.
The system of two electrons in a parabolic well is also treated by finite differences. In this system it is possible to separate the center-of-mass motion and hence to effect a considerable numerical simplification. It is shown that the pathological one-dimensional Coulomb potential gives rise to doubly degenerate eigenstates for the parabolic well in exactly the same manner as for the infinite square well.
Part II
A general method of treating inelastic collisions quantum mechanically is developed and applied to several one-dimensional models. The formalism is first developed for nonreactive “vibrational” excitations of a bound system by an incident free particle. It is then extended to treat simple exchange reactions of the form A + BC →AB + C. The method consists essentially of finding a set of linearly independent solutions of the Schrödinger equation such that each solution of the set satisfies a distinct, yet arbitrary boundary condition specified in the asymptotic region. These linearly independent solutions are then combined to form a total scattering wavefunction having the correct asymptotic form. The method of finite differences is used to determine the linearly independent functions.
The theory is applied to the impulsive collision of a free particle with a particle bound in (1) an infinite square well and (2) a parabolic well. Calculated transition probabilities agree well with previously obtained values.
Several models for the exchange reaction involving three identical particles are also treated: (1) infinite-square-well potential surface, in which all three particles interact as hard spheres and each two-particle subsystem (i.e. BC and AB) is bound by an attractive infinite-square-well potential; (2) truncated parabolic potential surface, in which the two-particle subsystems are bound by a harmonic oscillator potential which becomes infinite for interparticle separations greater than a certain value; (3) parabolic (untruncated) surface. Although there are no published values with which to compare our reaction probabilities, several independent checks on internal consistency indicate that the results are reliable.
Resumo:
Part I
The mechanism of the hydroformylation reaction was studied. Using cobalt deuterotetracarbonyl and 1-pentene as substrates, the first step in the reaction, addition of cobalt tetracarbonyl to an olefin, was shown to be reversible.
Part II
The role of coenzyme B12 in the isomerization of methylmalonyl coenzyme A to succinyl coenzyme A by methylmalonyl coenzyme A mutase was studied. The reaction was allowed to proceed to partial completion using a mixture of methylmalonyl coenzyme A and 4, 4, 4-tri-2H-methylmalonyl coenzyme A as substrate. The deuterium distribution in the product, succinyl coenzyme A, was shown to best fit a model in which hydrogen is transferred from C-4 of methylmalonyl coenzyme A to C-5’ of the adenosyl moiety of coenzyme B12 in the rate determining step. The three hydrogens at the 5’-adenosyl position of the coenzyme B12 intermediate are then able to become enzymatically equivalent before hydrogen is transferred from the coenzyme B12 intermediate to form succinyl coenzyme A.
Resumo:
I. The influence of N,N,N’,N’-tetramethylethylenediamine on the Schlenk equilibrium
The equilibrium between ethylmagnesium bromide, diethylmagnesium, and magnesium bromide has been studied by nuclear magnetic resonance spectroscopy. The interconversion of the species is very fast on the nmr time scale, and only an averaged spectrum is observed for the ethyl species. When N,N,N’,N’-tetramethylethylenediamine is added to solutions of these reagents in tetrahydrofuran, the rate of interconversion is reduced. At temperatures near -50°, two ethylmagnesium species have been observed. These are attributed to the different ethyl groups in ethylmagnesium bromide and diethylmagnesium, two of the species involved in the Schlenk equilibrium of Grignard reagents.
II. The nature of di-Grignard reagents
Di-Grignard reagents have been examined by nuclear magnetic resonance spectroscopy in an attempt to prove that dialkylmagnesium reagents are in equilibrium with alkylmagnesium halides. The di-Grignard reagents of compounds such as 1,4-dibromobutane have been investigated. The dialkylmagnesium form of this di-Grignard reagent can exist as an intramolecular cyclic species, tetramethylene-magnesium. This cyclic form would give an nmr spectrum different from that of the classical alkylmagnesium halide di-Grignard reagent. In dimethyl ether-tetrahydrofuran solutions of di-Grignard reagents containing N N,N,N’,N’-Tetramethylethylenediamine, evidence has been found for the existence of an intramolecular dialkylmagnesium species. This species is rapidly equilibrating with other forms, but at low temperatures, the rates of interconversion are reduced. Two species can be seen in the nmr spectrum at -50°. One is the cyclic species; the other is an open form.
Inversion of the carbon at the carbon-magnesium bond in di-Grignard reagents has also been studied. This process is much faster than in corresponding monofunctional Grignard reagents.
Resumo:
Part I
Potassium bis-(tricyanovinyl) amine, K+N[C(CN)=C(CN)2]2-, crystallizes in the monoclinic system with the space group Cc and lattice constants, a = 13.346 ± 0.003 Å, c = 8.992 ± 0.003 Å, B = 114.42 ± 0.02°, and Z = 4. Three dimensional intensity data were collected by layers perpendicular to b* and c* axes. The crystal structure was refined by the least squares method with anisotropic temperature factor to an R value of 0.064.
The average carbon-carbon and carbon-nitrogen bond distances in –C-CΞN are 1.441 ± 0.016 Å and 1.146 ± 0.014 Å respectively. The bis-(tricyanovinyl) amine anion is approximately planar. The coordination number of the potassium ion is eight with bond distances from 2.890 Å to 3.408 Å. The bond angle C-N-C of the amine nitrogen is 132.4 ± 1.9°. Among six cyano groups in the molecule, two of them are bent by what appear to be significant amounts (5.0° and 7.2°). The remaining four are linear within the experimental error. The bending can probably be explained by molecular packing forces in the crystals.
Part II
The nuclear magnetic resonance of 81Br and 127I in aqueous solutions were studied. The cation-halide ion interactions were studied by studying the effect of the Li+, Na+, K+, Mg++, Cs+ upon the line width of the halide ions. The solvent-halide ion interactions were studied by studying the effects of methanol, acetonitrile, and acetone upon the line width of 81Br and 127I in the aqueous solutions. It was found that the viscosity plays a very important role upon the halide ions line width. There is no specific cation-halide ion interaction for those ions such as Mg++, Di+, Na+, and K+, whereas the Cs+ - halide ion interaction is strong. The effect of organic solvents upon the halide ion line width in aqueous solutions is in the order acetone ˃ acetonitrile ˃ methanol. It is suggested that halide ions do form some stable complex with the solvent molecules and the reason Cs+ can replace one of the ligands in the solvent-halide ion complex.
Part III
An unusually large isotope effect on the bridge hydrogen chemical shift of the enol form of pentanedione-2, 4(acetylacetone) and 3-methylpentanedione-2, 4 has been observed. An attempt has been made to interpret this effect. It is suggested from the deuterium isotope effect studies, temperature dependence of the bridge hydrogen chemical shift studies, IR studies in the OH, OD, and C=O stretch regions, and the HMO calculations, that there may probably be two structures for the enol form of acetylacetone. The difference between these two structures arises mainly from the electronic structure of the π-system. The relative population of these two structures at various temperatures for normal acetylacetone and at room temperature for the deuterated acetylacetone were calculated.
Resumo:
Part I:
The perturbation technique developed by Rannie and Marble is used to study the effect of droplet solidification upon two-phase flow in a rocket nozzle. It is shown that under certain conditions an equilibrium flow exists, where the gas and particle phases have the same velocity and temperature at each section of the nozzle. The flow is divided into three regions: the first region, where the particles are all in the form of liquid droplets; a second region, over which the droplets solidify at constant freezing temperature; and a third region, where the particles are all solid. By a perturbation about the equilibrium flow, a solution is obtained for small particle slip velocities using the Stokes drag law and the corresponding approximation for heat transfer between the particle and gas phases. Singular perturbation procedure is required to handle the problem at points where solidification first starts and where it is complete. The effects of solidification are noticeable.
Part II:
When a liquid surface, in contact with only its pure vapor, is not in the thermodynamic equilibrium with it, a net condensation or evaporation of fluid occurs. This phenomenon is studied from a kinetic theory viewpoint by means of moment method developed by Lees. The evaporation-condensation rate is calculated for a spherical droplet and for a liquid sheet, when the temperatures and pressures are not too far removed from their equilibrium values. The solutions are valid for the whole range of Knudsen numbers from the free molecule to the continuum limit. In the continuum limit, the mass flux rate is proportional to the pressure difference alone.