25 resultados para space calculations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propagation of cosmic rays through interstellar space has been investigated with the view of determining what particles can traverse astronomical distances without serious loss of energy. The principal method of loss of energy of high energy particles is by interaction with radiation. It is found that high energy (1013-1018ev) electrons drop to one-tenth their energy in 108 light years in the radiation density in the galaxy and that protons are not significantly affected in this distance. The origin of the cosmic rays is not known so that various hypotheses as to their origin are examined. If the source is near a star it is found that the interaction of electrons and photons with the stellar radiation field and the interaction of electrons with the stellar magnetic field limit the amount of energy which these particles can carry away from the star. However, the interaction is not strong enough to affect the energy of protons or light nuclei appreciably. The chief uncertainty in the results is due to the possible existence of general galactic magnetic field. The main conclusion reached is that if there is a general galactic magnetic field, then the primary spectrum has very few photons, only low energy (˂ 1013 ev) electrons and the higher energy particles are primarily protons regardless of the source mechanism, and if there is no general galactic magnetic field, then the source of cosmic rays accelerates mainly protons and the present rate of production is much less than that in the past.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis an extensive study is made of the set P of all paranormal operators in B(H), the set of all bounded endomorphisms on the complex Hilbert space H. T ϵ B(H) is paranormal if for each z contained in the resolvent set of T, d(z, σ(T))//(T-zI)-1 = 1 where d(z, σ(T)) is the distance from z to σ(T), the spectrum of T. P contains the set N of normal operators and P contains the set of hyponormal operators. However, P is contained in L, the set of all T ϵ B(H) such that the convex hull of the spectrum of T is equal to the closure of the numerical range of T. Thus, NPL.

If the uniform operator (norm) topology is placed on B(H), then the relative topological properties of N, P, L can be discussed. In Section IV, it is shown that: 1) N P and L are arc-wise connected and closed, 2) N, P, and L are nowhere dense subsets of B(H) when dim H ≥ 2, 3) N = P when dimH ˂ ∞ , 4) N is a nowhere dense subset of P when dimH ˂ ∞ , 5) P is not a nowhere dense subset of L when dimH ˂ ∞ , and 6) it is not known if P is a nowhere dense subset of L when dimH ˂ ∞.

The spectral properties of paranormal operators are of current interest in the literature. Putnam [22, 23] has shown that certain points on the boundary of the spectrum of a paranormal operator are either normal eigenvalues or normal approximate eigenvalues. Stampfli [26] has shown that a hyponormal operator with countable spectrum is normal. However, in Theorem 3.3, it is shown that a paranormal operator T with countable spectrum can be written as the direct sum, N ⊕ A, of a normal operator N with σ(N) = σ(T) and of an operator A with σ(A) a subset of the derived set of σ(T). It is then shown that A need not be normal. If we restrict the countable spectrum of T ϵ P to lie on a C2-smooth rectifiable Jordan curve Go, then T must be normal [see Theorem 3.5 and its Corollary]. If T is a scalar paranormal operator with countable spectrum, then in order to conclude that T is normal the condition of σ(T) ≤ Go can be relaxed [see Theorem 3.6]. In Theorem 3.7 it is then shown that the above result is not true when T is not assumed to be scalar. It was then conjectured that if T ϵ P with σ(T) ≤ Go, then T is normal. The proof of Theorem 3.5 relies heavily on the assumption that T has countable spectrum and cannot be generalized. However, the corollary to Theorem 3.9 states that if T ϵ P with σ(T) ≤ Go, then T has a non-trivial lattice of invariant subspaces. After the completion of most of the work on this thesis, Stampfli [30, 31] published a proof that a paranormal operator T with σ(T) ≤ Go is normal. His proof uses some rather deep results concerning numerical ranges whereas the proof of Theorem 3.5 uses relatively elementary methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents investigations in four areas of theoretical astrophysics: the production of sterile neutrino dark matter in the early Universe, the evolution of small-scale baryon perturbations during the epoch of cosmological recombination, the effect of primordial magnetic fields on the redshifted 21-cm emission from the pre-reionization era, and the nonlinear stability of tidally deformed neutron stars.

In the first part of the thesis, we study the asymmetry-driven resonant production of 7 keV-scale sterile neutrino dark matter in the primordial Universe at temperatures T >~ 100 MeV. We report final DM phase space densities that are robust to uncertainties in the nature of the quark-hadron transition. We give transfer functions for cosmological density fluctuations that are useful for N-body simulations. We also provide a public code for the production calculation.

In the second part of the thesis, we study the instability of small-scale baryon pressure sound waves during cosmological recombination. We show that for relevant wavenumbers, inhomogenous recombination is driven by the transport of ionizing continuum and Lyman-alpha photons. We find a maximum growth factor less than ≈ 1.2 in 107 random realizations of initial conditions. The low growth factors are due to the relatively short duration of the recombination epoch.

In the third part of the thesis, we propose a method of measuring weak magnetic fields, of order 10-19 G (or 10-21 G if scaled to the present day), with large coherence lengths in the inter galactic medium prior to and during the epoch of cosmic reionization. The method utilizes the Larmor precession of spin-polarized neutral hydrogen in the triplet state of the hyperfine transition. We perform detailed calculations of the microphysics behind this effect, and take into account all the processes that affect the hyperfine transition, including radiative decays, collisions, and optical pumping by Lyman-alpha photons.

In the final part of the thesis, we study the non-linear effects of tidal deformations of neutron stars (NS) in a compact binary. We compute the largest three- and four-mode couplings among the tidal mode and high-order p- and g-modes of similar radial wavenumber. We demonstrate the near-exact cancellation of their effects, and resolve the question of the stability of the tidally deformed NS to leading order. This result is significant for the extraction of binary parameters from gravitational wave observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let L be the algebra of all linear transformations on an n-dimensional vector space V over a field F and let A, B, ƐL. Let Ai+1 = AiB - BAi, i = 0, 1, 2,…, with A = Ao. Let fk (A, B; σ) = A2K+1 - σ1A2K-1 + σ2A2K-3 -… +(-1)KσKA1 where σ = (σ1, σ2,…, σK), σi belong to F and K = k(k-1)/2. Taussky and Wielandt [Proc. Amer. Math. Soc., 13(1962), 732-735] showed that fn(A, B; σ) = 0 if σi is the ith elementary symmetric function of (β4- βs)2, 1 ≤ r ˂ s ≤ n, i = 1, 2, …, N, with N = n(n-1)/2, where β4 are the characteristic roots of B. In this thesis we discuss relations involving fk(X, Y; σ) where X, Y Ɛ L and 1 ≤ k ˂ n. We show: 1. If F is infinite and if for each X Ɛ L there exists σ so that fk(A, X; σ) = 0 where 1 ≤ k ˂ n, then A is a scalar transformation. 2. If F is algebraically closed, a necessary and sufficient condition that there exists a basis of V with respect to which the matrices of A and B are both in block upper triangular form, where the blocks on the diagonals are either one- or two-dimensional, is that certain products X1, X2…Xr belong to the radical of the algebra generated by A and B over F, where Xi has the form f2(A, P(A,B); σ), for all polynomials P(x, y). We partially generalize this to the case where the blocks have dimensions ≤ k. 3. If A and B generate L, if the characteristic of F does not divide n and if there exists σ so that fk(A, B; σ) = 0, for some k with 1 ≤ k ˂ n, then the characteristic roots of B belong to the splitting field of gk(w; σ) = w2K+1 - σ1w2K-1 + σ2w2K-3 - …. +(-1)K σKw over F. We use this result to prove a theorem involving a generalized form of property L [cf. Motzkin and Taussky, Trans. Amer. Math. Soc., 73(1952), 108-114]. 4. Also we give mild generalizations of results of McCoy [Amer. Math. Soc. Bull., 42(1936), 592-600] and Drazin [Proc. London Math. Soc., 1(1951), 222-231].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this thesis is to investigate the effect on performance and chamber temperature of adding hydrogen to a propellant system. The systems investigated are:

(1) RFNA-Aniline

(2) Nitromethane

(3) Anhydrous hydrazene-liquid oxygen

Since a systematic investigation of the performance parameters of the RFNA-Aniline system over a wide range of mixture ratios has never been made, it was decided to make these calculations, in addition to the investigations stated above.

The results of the calculations can best be summarized by a study of the figures at the end of the thesis. A few generalizations can be made. The effect of adding hydrogen in small quantities to a high temperature system is to increase the performance considerably without too much change in the chamber temperature. As more hydrogen is added, the percentage increase in performance. If hydrogen is added in large quantities, both the performance curve (effective exhaust velocity) and the chamber temperature curve flatten out.

The behavior discussed above is characteristic of hot propellant systems such as RFNA-Aniline and anhydrous hydrazene. In a low temperature system, such as nitromethane, the effect is quite different. The addition of hydrogen in small quantities causes a rapid decrease in chamber temperature, but the increase in performance is considerably less on a percentage basis. As more hydrogen is added the changes in performance and chamber temperature are almost linear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

Potassium bis-(tricyanovinyl) amine, K+N[C(CN)=C(CN)2]2-, crystallizes in the monoclinic system with the space group Cc and lattice constants, a = 13.346 ± 0.003 Å, c = 8.992 ± 0.003 Å, B = 114.42 ± 0.02°, and Z = 4. Three dimensional intensity data were collected by layers perpendicular to b* and c* axes. The crystal structure was refined by the least squares method with anisotropic temperature factor to an R value of 0.064.

The average carbon-carbon and carbon-nitrogen bond distances in –C-CΞN are 1.441 ± 0.016 Å and 1.146 ± 0.014 Å respectively. The bis-(tricyanovinyl) amine anion is approximately planar. The coordination number of the potassium ion is eight with bond distances from 2.890 Å to 3.408 Å. The bond angle C-N-C of the amine nitrogen is 132.4 ± 1.9°. Among six cyano groups in the molecule, two of them are bent by what appear to be significant amounts (5.0° and 7.2°). The remaining four are linear within the experimental error. The bending can probably be explained by molecular packing forces in the crystals.

Part II

The nuclear magnetic resonance of 81Br and 127I in aqueous solutions were studied. The cation-halide ion interactions were studied by studying the effect of the Li+, Na+, K+, Mg++, Cs+ upon the line width of the halide ions. The solvent-halide ion interactions were studied by studying the effects of methanol, acetonitrile, and acetone upon the line width of 81Br and 127I in the aqueous solutions. It was found that the viscosity plays a very important role upon the halide ions line width. There is no specific cation-halide ion interaction for those ions such as Mg++, Di+, Na+, and K+, whereas the Cs+ - halide ion interaction is strong. The effect of organic solvents upon the halide ion line width in aqueous solutions is in the order acetone ˃ acetonitrile ˃ methanol. It is suggested that halide ions do form some stable complex with the solvent molecules and the reason Cs+ can replace one of the ligands in the solvent-halide ion complex.

Part III

An unusually large isotope effect on the bridge hydrogen chemical shift of the enol form of pentanedione-2, 4(acetylacetone) and 3-methylpentanedione-2, 4 has been observed. An attempt has been made to interpret this effect. It is suggested from the deuterium isotope effect studies, temperature dependence of the bridge hydrogen chemical shift studies, IR studies in the OH, OD, and C=O stretch regions, and the HMO calculations, that there may probably be two structures for the enol form of acetylacetone. The difference between these two structures arises mainly from the electronic structure of the π-system. The relative population of these two structures at various temperatures for normal acetylacetone and at room temperature for the deuterated acetylacetone were calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let M be an Abelian W*-algebra of operators on a Hilbert space H. Let M0 be the set of all linear, closed, densely defined transformations in H which commute with every unitary operator in the commutant M’ of M. A well known result of R. Pallu de Barriere states that if ɸ is a normal positive linear functional on M, then ɸ is of the form T → (Tx, x) for some x in H, where T is in M. An elementary proof of this result is given, using only those properties which are consequences of the fact that ReM is a Dedekind complete Riesz space with plenty of normal integrals. The techniques used lead to a natural construction of the class M0, and an elementary proof is given of the fact that a positive self-adjoint transformation in M0 has a unique positive square root in M0. It is then shown that when the algebraic operations are suitably defined, then M0 becomes a commutative algebra. If ReM0 denotes the set of all self-adjoint elements of M0, then it is proved that ReM0 is Dedekind complete, universally complete Riesz spaces which contains ReM as an order dense ideal. A generalization of the result of R. Pallu de la Barriere is obtained for the Riesz space ReM0 which characterizes the normal integrals on the order dense ideals of ReM0. It is then shown that ReM0 may be identified with the extended order dual of ReM, and that ReM0 is perfect in the extended sense.

Some secondary questions related to the Riesz space ReM are also studied. In particular it is shown that ReM is a perfect Riesz space, and that every integral is normal under the assumption that every decomposition of the identity operator has non-measurable cardinal. The presence of atoms in ReM is examined briefly, and it is shown that ReM is finite dimensional if and only if every order bounded linear functional on ReM is a normal integral.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microwave response of the superconducting state in equilibrium and non-equilibrium configurations was examined experimentally and analytically. Thin film superconductors were mostly studied in order to explore spatial effects. The response parameter measured was the surface impedance.

For small microwave intensity the surface impedance at 10 GHz was measured for a variety of samples (mostly Sn) over a wide range of sample thickness and temperature. A detailed analysis based on the BCS theory was developed for calculating the surface impedance for general thickness and other experimental parameters. Experiment and theory agreed with each other to within the experimental accuracy. Thus it was established that the samples, thin films as well as bulk, were well characterised at low microwave powers (near equilibrium).

Thin films were perturbed by a small dc supercurrent and the effect on the superconducting order parameter and the quasiparticle response determined by measuring changes in the surface resistance (still at low microwave intensity and independent of it) due to the induced current. The use of fully superconducting resonators enabled the measurement of very small changes in the surface resistance (< 10-9 Ω/sq.). These experiments yield information regarding the dynamics of the order parameter and quasiparticle systems. For all the films studied the results could be described at temperatures near Tc by the thermodynamic depression of the order parameter due to the static current leading to a quadratic increase of the surface resistance with current.

For the thinnest films the low temperature results were surprising in that the surface resistance decreased with increasing current. An explanation is proposed according to which this decrease occurs due to an additional high frequency quasiparticle current caused by the combined presence of both static and high frequency fields. For frequencies larger than the inverse of the quasiparticle relaxation time this additional current is out of phase (by π) with the microwave electric field and is observed as a decrease of surface resistance. Calculations agree quantitatively with experimental results. This is the first observation and explanation of this non-equilibrium quasiparticle effect.

For thicker films of Sn, the low temperature surface resistance was found to increase with applied static current. It is proposed that due to the spatial non-uniformity of the induced current distribution across the thicker films, the above purely temporal analysis of the local quasiparticle response needs to be generalised to include space and time non-equilibrium effects.

The nonlinear interaction of microwaves arid superconducting films was also examined in a third set of experiments. The surface impedance of thin films was measured as a function of the incident microwave magnetic field. The experiments exploit the ability to measure the absorbed microwave power and applied microwave magnetic field absolutely. It was found that the applied surface microwave field could not be raised above a certain threshold level at which the absorption increased abruptly. This critical field level represents a dynamic critical field and was found to be associated with the penetration of the app1ied field into the film at values well below the thermodynamic critical field for the configuration of a field applied to one side of the film. The penetration occurs despite the thermal stability of the film which was unequivocally demonstrated by experiment. A new mechanism for such penetration via the formation of a vortex-antivortex pair is proposed. The experimental results for the thinnest films agreed with the calculated values of this pair generation field. The observations of increased transmission at the critical field level and suppression of the process by a metallic ground plane further support the proposed model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a paper published in 1961, L. Cesari [1] introduces a method which extends certain earlier existence theorems of Cesari and Hale ([2] to [6]) for perturbation problems to strictly nonlinear problems. Various authors ([1], [7] to [15]) have now applied this method to nonlinear ordinary and partial differential equations. The basic idea of the method is to use the contraction principle to reduce an infinite-dimensional fixed point problem to a finite-dimensional problem which may be attacked using the methods of fixed point indexes.

The following is my formulation of the Cesari fixed point method:

Let B be a Banach space and let S be a finite-dimensional linear subspace of B. Let P be a projection of B onto S and suppose Г≤B such that pГ is compact and such that for every x in PГ, P-1x∩Г is closed. Let W be a continuous mapping from Г into B. The Cesari method gives sufficient conditions for the existence of a fixed point of W in Г.

Let I denote the identity mapping in B. Clearly y = Wy for some y in Г if and only if both of the following conditions hold:

(i) Py = PWy.

(ii) y = (P + (I - P)W)y.

Definition. The Cesari fixed paint method applies to (Г, W, P) if and only if the following three conditions are satisfied:

(1) For each x in PГ, P + (I - P)W is a contraction from P-1x∩Г into itself. Let y(x) be that element (uniqueness follows from the contraction principle) of P-1x∩Г which satisfies the equation y(x) = Py(x) + (I-P)Wy(x).

(2) The function y just defined is continuous from PГ into B.

(3) There are no fixed points of PWy on the boundary of PГ, so that the (finite- dimensional) fixed point index i(PWy, int PГ) is defined.

Definition. If the Cesari fixed point method applies to (Г, W, P) then define i(Г, W, P) to be the index i(PWy, int PГ).

The three theorems of this thesis can now be easily stated.

Theorem 1 (Cesari). If i(Г, W, P) is defined and i(Г, W, P) ≠0, then there is a fixed point of W in Г.

Theorem 2. Let the Cesari fixed point method apply to both (Г, W, P1) and (Г, W, P2). Assume that P2P1=P1P2=P1 and assume that either of the following two conditions holds:

(1) For every b in B and every z in the range of P2, we have that ‖b=P2b‖ ≤ ‖b-z‖

(2)P2Г is convex.

Then i(Г, W, P1) = i(Г, W, P2).

Theorem 3. If Ω is a bounded open set and W is a compact operator defined on Ω so that the (infinite-dimensional) Leray-Schauder index iLS(W, Ω) is defined, and if the Cesari fixed point method applies to (Ω, W, P), then i(Ω, W, P) = iLS(W, Ω).

Theorems 2 and 3 are proved using mainly a homotopy theorem and a reduction theorem for the finite-dimensional and the Leray-Schauder indexes. These and other properties of indexes will be listed before the theorem in which they are used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part 1. Many interesting visual and mechanical phenomena occur in the critical region of fluids, both for the gas-liquid and liquid-liquid transitions. The precise thermodynamic and transport behavior here has some broad consequences for the molecular theory of liquids. Previous studies in this laboratory on a liquid-liquid critical mixture via ultrasonics supported a basically classical analysis of fluid behavior by M. Fixman (e. g., the free energy is assumed analytic in intensive variables in the thermodynamics)--at least when the fluid is not too close to critical. A breakdown in classical concepts is evidenced close to critical, in some well-defined ways. We have studied herein a liquid-liquid critical system of complementary nature (possessing a lower critical mixing or consolute temperature) to all previous mixtures, to look for new qualitative critical behavior. We did not find such new behavior in the ultrasonic absorption ascribable to the critical fluctuations, but we did find extra absorption due to chemical processes (yet these are related to the mixing behavior generating the lower consolute point). We rederived, corrected, and extended Fixman's analysis to interpret our experimental results in these more complex circumstances. The entire account of theory and experiment is prefaced by an extensive introduction recounting the general status of liquid state theory. The introduction provides a context for our present work, and also points out problems deserving attention. Interest in these problems was stimulated by this work but also by work in Part 3.

Part 2. Among variational theories of electronic structure, the Hartree-Fock theory has proved particularly valuable for a practical understanding of such properties as chemical binding, electric multipole moments, and X-ray scattering intensity. It also provides the most tractable method of calculating first-order properties under external or internal one-electron perturbations, either developed explicitly in orders of perturbation theory or in the fully self-consistent method. The accuracy and consistency of first-order properties are poorer than those of zero-order properties, but this is most often due to the use of explicit approximations in solving the perturbed equations, or to inadequacy of the variational basis in size or composition. We have calculated the electric polarizabilities of H2, He, Li, Be, LiH, and N2 by Hartree-Fock theory, using exact perturbation theory or the fully self-consistent method, as dictated by convenience. By careful studies on total basis set composition, we obtained good approximations to limiting Hartree-Fock values of polarizabilities with bases of reasonable size. The values for all species, and for each direction in the molecular cases, are within 8% of experiment, or of best theoretical values in the absence of the former. Our results support the use of unadorned Hartree-Pock theory for static polarizabilities needed in interpreting electron-molecule scattering data, collision-induced light scattering experiments, and other phenomena involving experimentally inaccessible polarizabilities.

Part 3. Numerical integration of the close-coupled scattering equations has been carried out to obtain vibrational transition probabilities for some models of the electronically adiabatic H2-H2 collision. All the models use a Lennard-Jones interaction potential between nearest atoms in the collision partners. We have analyzed the results for some insight into the vibrational excitation process in its dependence on the energy of collision, the nature of the vibrational binding potential, and other factors. We conclude also that replacement of earlier, simpler models of the interaction potential by the Lennard-Jones form adds very little realism for all the complication it introduces. A brief introduction precedes the presentation of our work and places it in the context of attempts to understand the collisional activation process in chemical reactions as well as some other chemical dynamics.