20 resultados para VINYL-TYPE POLYMERIZATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The functionalization of silicon surfaces with molecular catalysts for proton reduction is an important part of the development of a solar-powered, water-splitting device for solar fuel formation. The covalent attachment of these catalysts to silicon without damaging the underlying electronic properties of silicon that make it a good photocathode has proven difficult. We report the formation of mixed monolayer-functionalized surfaces that incor- porate both methyl and vinylferrocenyl or vinylbipyridyl (vbpy) moieties. The silicon was functionalized using reaction conditions analogous to those of hydrosilylation, but instead of a H-terminated Si surface, a chlorine-terminated Si precursor surface was used to produce the linked vinyl-modified functional group. The functionalized surfaces were characterized by time-resolved photoconductivity decay, X-ray photoelectron spectroscopy (XPS), electro- chemical, and photoelectrochemical measurements. The functionalized Si surfaces were well passivated, exhibited high surface coverage and few remaining reactive Si atop sites, had a very low surface recombination velocity, and displayed little initial surface oxidation. The surfaces were stable toward atmospheric and electrochemical oxidation. The surface coverage of ferrocene or bipyridine was controllably varied from 0 up to 30% of a monolayer without loss of the underlying electronic properties of the silicon. Interfacial charge transfer to the attached ferrocene group was relatively rapid, and a photovoltage of 0.4 V was generated upon illumination of functionalized n-type silicon surfaces in CH3CN. The immobilized bipyridine ligands bound transition metal ions, and thus enabled the assembly of metal complexes on the silicon surface. XPS studies demonstrated that [Cp∗Rh(vbpy)Cl]Cl, [Cp∗Ir(vbpy)Cl]Cl, and Ru(acac)2vbpy were assembled on the surface. For the surface prepared with iridium, x-ray absorption spectroscopy at the Ir LIII edge showed an edge energy and post-edge features virtually identical to a powder sample of [Cp∗Ir(bipy)Cl]Cl (bipy is 2,2 ́-bipyridyl). Electrochemical studies on these surfaces confirmed that the assembled complexes were electrochemically active.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes studies surrounding a ligand-gated ion channel (LGIC): the serotonin type 3A receptor (5-HT3AR). Structure-function experiments using unnatural amino acid mutagenesis are described, as well as experiments on the methodology of unnatural amino acid mutagenesis. Chapter 1 introduces LGICs, experimental methods, and an overview of the unnatural amino acid mutagenesis.

In Chapter 2, the binding orientation of the clinically available drugs ondansetron and granisetron within 5-HT3A is determined through a combination of unnatural amino acid mutagenesis and an inhibition based assay. A cation-π interaction is found for both ondansetron and granisetron with a specific tryptophan residue (Trp183, TrpB) of the mouse 5-HT3AR, which establishes a binding orientation for these drugs.

In Chapter 3, further studies were performed with ondansetron and granisetron with 5-HT3A. The primary determinant of binding for these drugs was determined to not include interactions with a specific tyrosine residue (Tyr234, TyrC2). In completing these studies, evidence supporting a cation-π interaction of a synthetic agonist, meta-chlorophenylbiguanide, was found with TyrC2.

In Chapter 4, a direct chemical acylation strategy was implemented to prepare full-length suppressor tRNA mediated by lanthanum(III) and amino acid phosphate esters. The derived aminoacyl-tRNA is shown to be translationally competent in Xenopus oocytes.

Appendix A.1 gives details of a pharmacological method for determining the equilibrium dissociation constant, KB, of a competitive antagonist with a receptor, known as Schild analysis. Appendix A.2 describes an examination of the inhibitory activity of new chemical analogs of the 5-HT3A antagonist ondansetron. Appendix A.3 reports an organic synthesis of an intermediate for a new unnatural amino acid. Appendix A.4 covers an additional methodological examination for the preparation of amino-acyl tRNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation primarily describes studies of serotonin type 3 (5-HT3) receptors of the Cys-loop super-family of ligand gated ion channels. The first chapter provides a general introduction to these important proteins and the methods used to interrogate their structure and function. The second chapter details the delineation of a structural unit of the ligand binding site of homomeric 5-HT3A receptors on which the ligands serotonin (5-HT) and m-chlorophenyl biguanide (mCPBG) are reliant for effective receptor activation. Unnatural amino acid mutagenesis results show that the details of each ligand’s interaction with this organizing feature of the binding site differ, providing insights into general principles of receptor activation.

The third chapter describes a study in which florescent protein fusions of the A and B subunits of the heteromeric 5-HT3AB receptor are employed to determine the subunit stoichiometry and order within functional receptors. Strong evidence is found for an A3B2 stoichiometry with A-A-B-A-B order. The fourth chapter investigates the potential for ligand binding across heteromeric binding sites in the 5-HT3AB receptor. Unlike serotonin, mCPBG is found to bind the receptor at heteromeric binding sites. Further mCPBG is capable of allosterically modulating the response of serotonin on the 5-HT3AB receptor from these heteromeric sites.

Finally, the fifth chapter describes progress towards the application of unnatural amino acid mutagenesis to an important new class of proteins, transcription factors. Experiments optimizing novel methods for the detection of function are described, using RARα of the nuclear receptor family of transcription factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface resistance and the critical magnetic field of lead electroplated on copper were studied at 205 MHz in a half-wave coaxial resonator. The observed surface resistance at a low field level below 4.2°K could be well described by the BCS surface resistance with the addition of a temperature independent residual resistance. The available experimental data suggest that the major fraction of the residual resistance in the present experiment was due to the presence of an oxide layer on the surface. At higher magnetic field levels the surface resistance was found to be enhanced due to surface imperfections.

The attainable rf critical magnetic field between 2.2°K and T_c of lead was found to be limited not by the thermodynamic critical field but rather by the superheating field predicted by the one-dimensional Ginzburg-Landau theory. The observed rf critical field was very close to the expected superheating field, particularly in the higher reduced temperature range, but showed somewhat stronger temperature dependence than the expected superheating field in the lower reduced temperature range.

The rf critical magnetic field was also studied at 90 MHz for pure tin and indium, and for a series of SnIn and InBi alloys spanning both type I and type II superconductivity. The samples were spherical with typical diameters of 1-2 mm and a helical resonator was used to generate the rf magnetic field in the measurement. The results of pure samples of tin and indium showed that a vortex-like nucleation of the normal phase was responsible for the superconducting-to-normal phase transition in the rf field at temperatures up to about 0.98-0.99 T_c' where the ideal superheating limit was being reached. The results of the alloy samples showed that the attainable rf critical fields near T_c were well described by the superheating field predicted by the one-dimensional GL theory in both the type I and type II regimes. The measurement was also made at 300 MHz resulting in no significant change in the rf critical field. Thus it was inferred that the nucleation time of the normal phase, once the critical field was reached, was small compared with the rf period in this frequency range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

The mechanism of the hydroformylation reaction was studied. Using cobalt deuterotetracarbonyl and 1-pentene as substrates, the first step in the reaction, addition of cobalt tetracarbonyl to an olefin, was shown to be reversible.

Part II

The role of coenzyme B12 in the isomerization of methylmalonyl coenzyme A to succinyl coenzyme A by methylmalonyl coenzyme A mutase was studied. The reaction was allowed to proceed to partial completion using a mixture of methylmalonyl coenzyme A and 4, 4, 4-tri-2H-methylmalonyl coenzyme A as substrate. The deuterium distribution in the product, succinyl coenzyme A, was shown to best fit a model in which hydrogen is transferred from C-4 of methylmalonyl coenzyme A to C-5’ of the adenosyl moiety of coenzyme B12 in the rate determining step. The three hydrogens at the 5’-adenosyl position of the coenzyme B12 intermediate are then able to become enzymatically equivalent before hydrogen is transferred from the coenzyme B12 intermediate to form succinyl coenzyme A.