33 resultados para Magnetic instruments
Resumo:
The surface resistance and the critical magnetic field of lead electroplated on copper were studied at 205 MHz in a half-wave coaxial resonator. The observed surface resistance at a low field level below 4.2°K could be well described by the BCS surface resistance with the addition of a temperature independent residual resistance. The available experimental data suggest that the major fraction of the residual resistance in the present experiment was due to the presence of an oxide layer on the surface. At higher magnetic field levels the surface resistance was found to be enhanced due to surface imperfections.
The attainable rf critical magnetic field between 2.2°K and T_c of lead was found to be limited not by the thermodynamic critical field but rather by the superheating field predicted by the one-dimensional Ginzburg-Landau theory. The observed rf critical field was very close to the expected superheating field, particularly in the higher reduced temperature range, but showed somewhat stronger temperature dependence than the expected superheating field in the lower reduced temperature range.
The rf critical magnetic field was also studied at 90 MHz for pure tin and indium, and for a series of SnIn and InBi alloys spanning both type I and type II superconductivity. The samples were spherical with typical diameters of 1-2 mm and a helical resonator was used to generate the rf magnetic field in the measurement. The results of pure samples of tin and indium showed that a vortex-like nucleation of the normal phase was responsible for the superconducting-to-normal phase transition in the rf field at temperatures up to about 0.98-0.99 T_c' where the ideal superheating limit was being reached. The results of the alloy samples showed that the attainable rf critical fields near T_c were well described by the superheating field predicted by the one-dimensional GL theory in both the type I and type II regimes. The measurement was also made at 300 MHz resulting in no significant change in the rf critical field. Thus it was inferred that the nucleation time of the normal phase, once the critical field was reached, was small compared with the rf period in this frequency range.
Resumo:
The differential energy spectra of cosmic-ray protons and He nuclei have been measured at energies up to 315 MeV/nucleon using balloon- and satellite-borne instruments. These spectra are presented for solar quiet times for the years 1966 through 1970. The data analysis is verified by extensive accelerator calibrations of the detector systems and by calculations and measurements of the production of secondary protons in the atmosphere.
The spectra of protons and He nuclei in this energy range are dominated by the solar modulation of the local interstellar spectra. The transport equation governing this process includes as parameters the solar-wind velocity, V, and a diffusion coefficient, K(r,R), which is assumed to be a scalar function of heliocentric radius, r, and magnetic rigidity, R. The interstellar spectra, jD, enter as boundary conditions on the solutions to the transport equation. Solutions to the transport equation have been calculated for a broad range of assumed values for K(r,R) and jD and have been compared with the measured spectra.
It is found that the solutions may be characterized in terms of a dimensionless parameter, ψ(r,R) = ∞∫r V dr'/(K(r',R). The amount of modulation is roughly proportional to ψ. At high energies or far from the Sun, where the modulation is weak, the solution is determined primarily by the value of ψ (and the interstellar spectrum) and is not sensitive to the radial dependence of the diffusion coefficient. At low energies and for small r, where the effects of adiabatic deceleration are found to be large, the spectra are largely determined by the radial dependence of the diffusion coefficient and are not very sensitive to the magnitude of ψ or to the interstellar spectra. This lack of sensitivity to jD implies that the shape of the spectra at Earth cannot be used to determine the interstellar intensities at low energies.
Values of ψ determined from electron data were used to calculate the spectra of protons and He nuclei near Earth. Interstellar spectra of the form jD α (W - 0.25m)-2.65 for both protons and He nuclei were found to yield the best fits to the measured spectra for these values of ψ, where W is the total energy and m is the rest energy. A simple model for the diffusion coefficient was used in which the radial and rigidity dependence are separable and K is independent of radius inside a modulation region which has a boundary at a distance D. Good agreement was found between the measured and calculated spectra for the years 1965 through 1968, using typical boundary distances of 2.7 and 6.1 A.U. The proton spectra observed in 1969 and 1970 were flatter than in previous years. This flattening could be explained in part by an increase in D, but also seemed to require that a noticeable fraction of the observed protons at energies as high at 50 to 100 MeV be attributed to quiet-time solar emission. The turnup in the spectra at low energies observed in all years was also attributed to solar emission. The diffusion coefficient used to fit the 1965 spectra is in reasonable agreement with that determined from the power spectra of the interplanetary magnetic field (Jokipii and Coleman, 1968). We find a factor of roughly 3 increase in ψ from 1965 to 1970, corresponding to the roughly order of magnitude decrease in the proton intensity at 250 MeV. The change in ψ might be attributed to a decrease in the diffusion coefficient, or, if the diffusion coefficient is essentially unchanged over that period (Mathews et al., 1971), might be attributed to an increase in the boundary distance, D.
Resumo:
I. The thermomagnetic behavior and infrared spectroscopic features of KFe3(SO4)2(OH)6 (jarosite), (H3O)Fe3(SO4)2 (OH)6 (hydronium jarosite), KFe3(CrO4)2 (OH)6, Fe(OH)SO4 (basic iron sulfate), and Fe(OH)CrO4 (basic iron chromate) are reported. Fe(OH)CrO4 and KFe3(CrO4)2 (OH)6 are shown to be weak ferro magnets with Curie temperatures of 73 and 71 °K, respectively. This unusual magnetic behavior is rationalized in terms of the ionic spin configurations of the phases. Exchange coupling through chromate bridging groups is shown to be weak.
II. The magnetic behavior and the influence of preparative history on the magnetic behavior of δFeO(OH) is reported. δFeO(OH) is shown to be a fine-particulate, uniaxial, magnetic species. Magnetization data for this species are shown to be consistent with the existence of magnetically inactive layers surrounding magnetic particles.
Resumo:
Theoretical and experimental studies of a gas laser amplifier are presented, assuming the amplifier is operating with a saturating optical frequency signal. The analysis is primarily concerned with the effects of the gas pressure and the presence of an axial magnetic field on the characteristics of the amplifying medium. Semiclassical radiation theory is used, along with a density matrix description of the atomic medium which relates the motion of single atoms to the macroscopic observables. A two-level description of the atom, using phenomenological source rates and decay rates, forms the basis of our analysis of the gas laser medium. Pressure effects are taken into account to a large extent through suitable choices of decay rate parameters.
Two methods for calculating the induced polarization of the atomic medium are used. The first method utilizes a perturbation expansion which is valid for signal intensities which barely reach saturation strength, and it is quite general in applicability. The second method is valid for arbitrarily strong signals, but it yields tractable solutions only for zero magnetic field or for axial magnetic fields large enough such that the Zeeman splitting is much larger than the power broadened homogeneous linewidth of the laser transition. The effects of pressure broadening of the homogeneous spectral linewidth are included in both the weak-signal and strong-signal theories; however the effects of Zeeman sublevel-mixing collisions are taken into account only in the weak-signal theory.
The behavior of a He-Ne gas laser amplifier in the presence of an axial magnetic field has been studied experimentally by measuring gain and Faraday rotation of linearly polarized resonant laser signals for various values of input signal intensity, and by measuring nonlinearity - induced anisotropy for elliptically polarized resonant laser signals of various input intensities. Two high-gain transitions in the 3.39-μ region were used for study: a J = 1 to J = 2 (3s2 → 3p4) transition and a J = 1 to J = 1 (3s2 → 3p2) transition. The input signals were tuned to the centers of their respective resonant gain lines.
The experimental results agree quite well with corresponding theoretical expressions which have been developed to include the nonlinear effects of saturation strength signals. The experimental results clearly show saturation of Faraday rotation, and for the J = 1 t o J = 1 transition a Faraday rotation reversal and a traveling wave gain dip are seen for small values of axial magnetic field. The nonlinearity induced anisotropy shows a marked dependence on the gas pressure in the amplifier tube for the J = 1 to J = 2 transition; this dependence agrees with the predictions of the general perturbational or weak signal theory when allowances are made for the effects of Zeeman sublevel-mixing collisions. The results provide a method for measuring the upper (neon 3s2) level quadrupole moment decay rate, the dipole moment decay rates for the 3s2 → 3p4 and 3s2 → 3p2 transitions, and the effects of various types of collision processes on these decay rates.
Resumo:
A theory of the order-disorder transformation is developed in complete generality. The general theory is used to calculate long range order parameters, short range order parameters, energy, and phase diagrams for a face centered cubic binary alloy. The theoretical results are compared to the experimental determination of the copper-gold system, Values for the two adjustable parameters are obtained.
An explanation for the behavior of magnetic alloys is developed, Curie temperatures and magnetic moments of the first transition series elements and their alloys in both the ordered and disordered states are predicted. Experimental agreement is excellent in most cases. It is predicted that the state of order can effect the magnetic properties of an alloy to a considerable extent in alloys such as Ni3Mn. The values of the adjustable parameter used to fix the level of the Curie temperature, and the adjustable parameter that expresses the effect of ordering on the Curie temperature are obtained.
Resumo:
Conformational equilibrium in medium-sized rings has been investigated by the temperature variation of the fluorine-19 n.m.r. spectra of 1, 1-difluorocycloalkanes and various substituted derivatives of them. Inversion has been found to be fast on the n.m.r. time scale at -180˚ for 1, 1-difluorocycloheptane, but slow for 1, 1-difluoro-4, 4-dimethylcycloheptane at -150˚. At low temperature, the latter compound affords a single AB pattern with a chemical-shift difference of 841 cps. which has been interpreted in terms of the twist-chair conformation with the methyl groups on the axis position and the fluorine atoms in the 4-position. At room temperature, the n.m.r. spectrum of 1, 1-difluoro-4-t-butylcycloheptane affords an AB pattern with a chemical-shift difference of 185 cps. The presence of distinct trans and gauche couplings from the adjacent hydrogens has been interpreted to suggest the existence of a single predominant form, the twist chair with the fluorine atoms on the axis position.
Investigation of 1, 1-difluorocycloöctane and 1, 1, 4, 4-tetrafluorocycloöctane has led to the detection of two kinetic processes both having activation energies of 8-10 kcal./mole but quite different A values. In light of these results eleven different conformations of cycloöctane along with a detailed description of the ways in which they may be interconverted are discussed. An interpretation involving the twist-boat conformation rapidly equilibrating through the saddle and the parallel-boat forms at room temperature is compatible with the results.
Resumo:
I. Nuclear magnetic resonance spectra of appropriately substituted ferrocenylcarbonium ions reveal the α-protons of the substituted ring to be more shielded than β-protons. The observation is discussed in terms of various models proposed for the ferrocenylcarbonium ion and is found to support a model in which the iron is bonded to all six carbona of the substituted ring.
II. Ferrocene catalyzes the photoisomerization of the piperylenes and the photodimerization of isoprene. Our results suggest a mechanism in which a complex of ferrocene and diene is excited to its second singlet state which dissociates to a triplet-state ferrocene molecule and a triplet-state diene molecule. The triplet-state diene, then, proceeds to isomerize or attack ground-state diene to form dimers.
Resumo:
Part I.
The interaction of a nuclear magnetic moment situated on an internal top with the magnetic fields produced by the internal as well as overall molecular rotation has been derived following the method of Van Vleck for the spin-rotation interaction in rigid molecules. It is shown that the Hamiltonian for this problem may be written
HSR = Ῑ · M · Ĵ + Ῑ · M” · Ĵ”
Where the first term is the ordinary spin-rotation interaction and the second term arises from the spin-internal-rotation coupling.
The F19 nuclear spin-lattice relaxation time (T1) of benzotrifluoride and several chemically substituted benzotrifluorides, have been measured both neat and in solution, at room temperature by pulsed nuclear magnetic resonance. From these experimental results it is concluded that in benzotrifluoride the internal rotation is crucial to the spin relaxation of the fluorines and that the dominant relaxation mechanism is the fluctuating spin-internal-rotation interaction.
Part II.
The radiofrequency spectrum corresponding to the reorientation of the F19 nuclear moment in flurobenzene has been studied by the molecular beam magnetic resonance method. A molecular beam apparatus with an electron bombardment detector was used in the experiments. The F19 resonance is a composite spectrum with contributions from many rotational states and is not resolved. A detailed analysis of the resonance line shape and width by the method of moments led to the following diagonal components of the fluorine spin-rotational tensor in the principal inertial axis system of the molecule:
F/Caa = -1.0 ± 0.5 kHz
F/Cbb = -2.7 ± 0.2 kHz
F/Ccc = -1.9 ± 0.1 kHz
From these interaction constants, the paramagnetic contribution to the F19 nuclear shielding in C6H5F was determined to be -284 ± ppm. It was further concluded that the F19 nucleus in this molecule is more shielded when the applied magnetic field is directed along the C-F bond axis. The anisotropy of the magnetic shielding tensor, σ” - σ⊥, is +160 ± 30 ppm.
Resumo:
Part I
Potassium bis-(tricyanovinyl) amine, K+N[C(CN)=C(CN)2]2-, crystallizes in the monoclinic system with the space group Cc and lattice constants, a = 13.346 ± 0.003 Å, c = 8.992 ± 0.003 Å, B = 114.42 ± 0.02°, and Z = 4. Three dimensional intensity data were collected by layers perpendicular to b* and c* axes. The crystal structure was refined by the least squares method with anisotropic temperature factor to an R value of 0.064.
The average carbon-carbon and carbon-nitrogen bond distances in –C-CΞN are 1.441 ± 0.016 Å and 1.146 ± 0.014 Å respectively. The bis-(tricyanovinyl) amine anion is approximately planar. The coordination number of the potassium ion is eight with bond distances from 2.890 Å to 3.408 Å. The bond angle C-N-C of the amine nitrogen is 132.4 ± 1.9°. Among six cyano groups in the molecule, two of them are bent by what appear to be significant amounts (5.0° and 7.2°). The remaining four are linear within the experimental error. The bending can probably be explained by molecular packing forces in the crystals.
Part II
The nuclear magnetic resonance of 81Br and 127I in aqueous solutions were studied. The cation-halide ion interactions were studied by studying the effect of the Li+, Na+, K+, Mg++, Cs+ upon the line width of the halide ions. The solvent-halide ion interactions were studied by studying the effects of methanol, acetonitrile, and acetone upon the line width of 81Br and 127I in the aqueous solutions. It was found that the viscosity plays a very important role upon the halide ions line width. There is no specific cation-halide ion interaction for those ions such as Mg++, Di+, Na+, and K+, whereas the Cs+ - halide ion interaction is strong. The effect of organic solvents upon the halide ion line width in aqueous solutions is in the order acetone ˃ acetonitrile ˃ methanol. It is suggested that halide ions do form some stable complex with the solvent molecules and the reason Cs+ can replace one of the ligands in the solvent-halide ion complex.
Part III
An unusually large isotope effect on the bridge hydrogen chemical shift of the enol form of pentanedione-2, 4(acetylacetone) and 3-methylpentanedione-2, 4 has been observed. An attempt has been made to interpret this effect. It is suggested from the deuterium isotope effect studies, temperature dependence of the bridge hydrogen chemical shift studies, IR studies in the OH, OD, and C=O stretch regions, and the HMO calculations, that there may probably be two structures for the enol form of acetylacetone. The difference between these two structures arises mainly from the electronic structure of the π-system. The relative population of these two structures at various temperatures for normal acetylacetone and at room temperature for the deuterated acetylacetone were calculated.
Resumo:
High-resolution, natural-abundance 13C spectra have been obtained from a wide variety of organic compounds; 13C chemical shifts and coupling constants have been correlated with other molecular properties.
Geminal and vicinal, carbon-proton couplings in benzene and the five- and six-membered aromatic heterocycles have been related to the corresponding proton-proton couplings in substituted ethylenes. The carbon-proton coupling constants in benzene are JCCH = + 1.0, JCCCH = +7.4 and JCCCH = -1.1 Hz. Extended Hückel wavefunctions are uniformly poor in explaining the long-range, carbon-proton couplings in aromatic systems.
Couplings between carbon and elements other than hydrogen have been observed in proton decoupled 13C spectra. All of the carbons in fluorobenzene and 1-fluoronaphthalene, but only six of the carbons in 2-fluoronaphthalene are coupled to the fluorine. One-bond, carbon-phosphorus coupling in trialkylphosphines is negative, while one-bond, carbon-phosphorus coupling in tetra-alkylphosphonium ions is positive. Atoms which do not use hybrid orbitals to form bonds to carbon (F, P(III), Se, Te) may have negative, one-bond coupling constants because of the failure of the average energy approximation. One-bond couplings between carbon and carbon, silicon, tin, lead and mercury appear to be explainable in terms of an effective nuclear charge and the s-bond order of the metal. Couplings between carbon and nitrogen and phosphorus (IV) have significant negative contributions to the Fermi contact coupling expression, though, within one series, correlations with s-bond order may be valid. Carbon-carbon coupling in cyclopropane derivatives (10-15 Hz) is consistent with a high degree of p character in the interior orbitals. Some two- and three-bond carbon-carbon coupling constants have also been observed.
Substituent effects of hydroxyl groups on the 13C chemical shifts of continuous-chain alkanes depend both on steric and electronic factors. The hydroxyl substituent effects in the long-chain, primary alcohols are α = -48.3, β = -10.2, and γ = +6.0 ppm. The upfield γ effect is attributed to steric crowding in the gauche conformations. Additivity of the hydroxyl and carbonyl and alkyl substituent effects in alkyl-substituted cyclohexanols and cyclohexanones has been demonstrated.
Resumo:
The nature of the intra- and intermolecular base-stacking interactions involving several dinucleoside monophosphates in aqueous solution have been investigated by proton magnetic resonance spectrosocopy, and this method has been applied to a study of the interaction of polyuridylic acid with purine and adenosine monomers.
The pmr spectra of adenylyl (3' → 5') cytidine (ApC) and cytidylyl (3' → 5') adenosine (CpA) have been studied as a function of concentration and temperature. The results of these studies indicate that the intramolecular base-stacking interactions between the adenine and cytosine bases of these dinucleoside monophosphates are rather strong, and that the stacking tendencies are comparable for the two sequence isomers. The chemical shifts of the cytosine H5 and adenine H2 protons, and their variations with temperature, were shown to be consistent with stacked conformations in which both bases of the dinucleoside monophosphates are preferentially oriented in the anti conformation as in similar dApdC, and dCpdA (dA = deoxyadenosine; dC = deoxycytidine) segments in double helical DNA. The intramolecular stacking interaction was found to have a pronounced effect on the conformations of the ribose moieties, and these conformational changes are discussed. The concentration studies indicate extensive self-association of these dinucleoside monophosphates, and analysis of the concentration data facilitated determination of the dimerization constant for the association process as well as the nature of the intermolecular complexes.
The dependence of the ribose conformation upon the extent of intramolecular base-stacking was used to demonstrate that the base-base interaction in cytidylyl (3' → 5') cytidine (CpC) is rather strong, while there appears to be little interaction between the two uracil bases of uridylyl (3' → 5') uridine (UpU).
Studies of the binding of purine to several ribose and deoxyribose dinucleoside monophosphates show that the mode of interaction is base-stacking, and evidence for the formation of a purine-dinucleoside monophosphate intercalated complex is presented. The purine proton resonances are markedly broadened in this complex, and estimates of the purine linewidths in the complex and the equilibrium constant for purine intercalation are obtained.
A study of the interaction of unsubstitued purine with polyuridylic acid at 29°C by pmr indicated that purine binds to the uracil bases of the polymer by base-stacking. The severe broadening of the purine proton resonances observed provides strong evidence for the intercalation of purine between adjacent uracil bases of poly U. This interaction does not result in a more rigid or ordered structure for the polymer.
Investigation of the interaction between adenosine and polyuridylic acid revealed two modes of interaction between the monomer and the polymer, depending on the temperature. At temperatures above 26°C or so, monomeric adenosine binds to poly U by noncooperative A-U base stacking. Below this temperature, a rigid triple-stranded 1A:2U complex is formed, presumably via cooperative hydrogen-bonding as has previously been reported.
These results clearly illustrate the importance of base-stacking in non-specific interactions between bases, nucleosides and nucleotides, and also reveal the important role of the base-stacking interactions in cooperatively for med structures involving specific base-pairing where both types of interaction are possible.
Resumo:
The synthesis of iodonium salts of the general formula [C6H5IR]+X-, where R is an alkyl group and x- is a stabilizing anion, was attempted. For the choice of R three groups were selected, whose derivatives are known to be sluggish in SN1 and SN2 substitutions: cyclopropyl, 7, 7 -dimethyl-1-norbornyl, and 9 -triptycyl. The synthetic routes followed along classical lines which have been exploited in recent years by Beringer and students. Ultimately, the object of the present study was to study the reactions of the above salts with nucleophiles. In none of the three cases, however, was it possible to isolate a stable salt. A thermodynamic argument suggests that this must be due to kinetic instability rather than thermodynamic instability. Only iodocyclopropane and 1-iodoapocamphane formed isolable iododichlorides.
Several methylated 2, 2-difluoronorbornanes were prepared with the intent of correlating fluorine -19 chemical shifts with geometric features in a rigid system. The effect of a methyl group on the shielding of a β -fluorine is dependent upon the dihedral angle; the maximum effect (an upfield shift of the resonance) occurs at 0° and 180°, whereas almost no effect is felt at a dihedral angle of 120°. The effect of a methyl group on a γ -fluorine is to strongly shift the resonance downfield when fluorine and methyl group are in a 1, 3 - diaxial-like relationship. Molecular orbital calculations of fluorine shielding in a variety of molecules were carried out using the formalism developed by Pople; the results are, at best, in modest agreement with experiment.
Resumo:
The induced magnetic uniaxial anisotropy of Ni-Fe alloy films has been shown to be related to the crystal structure of the film. By use of electron diffraction, the crystal structure or vacuum-deposited films was determined over the composition range 5% to 85% Ni, with substrate temperature during deposition at various temperatures in the range 25° to 500° C. The phase diagram determined in this way has boundaries which are in fair agreement with the equilibrium boundaries for bulk material above 400°C. The (α+ ɤ) mixture phase disappears below 100°C.
The measurement of uniaxial anisotropy field for 25% Ni-Fe alloy films deposited at temperatures in the range -80°C to 375°C has been carried out. Comparison of the crystal structure phase diagram with the present data and those published by Wilts indicates that the anisotropy is strongly sensitive to crystal structure. Others have proposed pair ordering as an important source of anisotropy because of an apparent peak in the anisotropy energy at about 50% Ni composition. The present work shows no such peak, and leads to the conclusion that pair ordering cannot be a dominant contributor.
Width of the 180° domain wall in 76% Ni-Fe alloy films as a function of film thickness up to 1800 Å was measured using the defocused mode of Lorentz microscopy. For the thinner films, the measured wall widths are in good agreement with earlier data obtained by Fuchs. For films thicker than 800 Å, the wall width increases with film thickness to about 9000 Å at 1800 Å film thickness. Similar measurements for polycrystalline Co films with thickness from 200 to 1500 Å have been made. The wall width increases from 3000 Å at 400 Å film thickness to about 6000 Å at 1500 Å film thickness. The wall widths for Ni-Fe and Co films are much greater than predicted by present theories. The validity of the classical determination of wall width is discussed, and the comparison of the present data with theoretical results is given.
Finally, an experimental study of ripple by Lorentz microscopy in Ni-Fe alloy films has been carried out. The following should be noted: (1) the only practical way to determine experimentally a meaningful wavelength is to find a well-defined ripple periodicity by visual inspection of a photomicrograph. (2) The average wavelength is of the order of 1µ. This value is in reasonable agreement with the main wavelength predicted by the theories developed by others. The dependence of wavelength on substrate deposition temperature, alloy composition and the external magnetic field has been also studied and the results are compared with theoretical predictions. (3) The experimental fact that the ripple structure could not be observed in completely epitaxial films gives confirmation that the ripple results from the randomness of crystallite orientation. Furthermore, the experimental observation that the ripple disappeared in the range 71 and 75% Ni supports the theory that the ripple amplitude is directly dependent on the crystalline anisotropy. An attempt to experimentally determine the order of magnitude of the ripple angle was carried out. The measured angle was about 0.02 rad. The discrepancy between the experimental data and the theoretical prediction is serious. The accurate experimental determination of ripple angle is an unsolved problem.
Resumo:
A theory of electromagnetic absorption is presented to explain the changes in surface impedance for Pippard superconductors (ξo ≫λ) due to large static magnetic fields. The static magnetic field penetrating the metal near the surface induces a momentum dependent potential in Bogolubov's equations. Such a potential modifies a quasiparticle's wavefunction and excitation spectrum. These changes affect the behavior of the surface impedance in a way that in large measure agrees with available observations.
Resumo:
Part I. Proton Magnetic Resonance of Polynucleotides and Transfer RNA.
Proton magnetic resonance was used to follow the temperature dependent intramolecular stacking of the bases in the polynucleotides of adenine and cytosine. Analysis of the results on the basis of a two state stacked-unstacked model yielded values of -4.5 kcal/mole and -9.5 kcal/mole for the enthalpies of stacking in polyadenylic and polycytidylic acid, respectively.
The interaction of purine with these molecules was also studied by pmr. Analysis of these results and the comparison of the thermal unstacking of polynucleotides and short chain nucleotides indicates that the bases contained in stacks within the long chain poly nucleotides are, on the average, closer together than the bases contained in stacks in the short chain nucleotides.
Temperature and purine studies were also carried out with an aqueous solution of formylmethionine transfer ribonucleic acid. Comparison of these results with the results of similar experiments with the homopolynucleotides of adenine, cytosine and uracil indicate that the purine is probably intercalating into loop regions of the molecule.
The solvent denaturation of phenylalanine transfer ribonucleic acid was followed by pmr. In a solvent mixture containing 83 volume per cent dimethylsulf oxide and 17 per cent deuterium oxide, the tRNA molecule is rendered quite flexible. It is possible to resolve resonances of protons on the common bases and on certain modified bases.
Part II. Electron Spin Relaxation Studies of Manganese (II) Complexes in Acetonitrile.
The electron paramagnetic resonance spectra of three Mn+2 complexes, [Mn(CH3CN)6]+2, [MnCl4]-2, and [MnBr4]-2, in acetonitrile were studied in detail. The objective of this study was to relate changes in the effective spin Hamiltonian parameters and the resonance line widths to the structure of these molecular complexes as well as to dynamical processes in solution.
Of the three systems studied, the results obtained from the [Mn(CH3CN)6]+2 system were the most straight-forward to interpret. Resonance broadening attributable to manganese spin-spin dipolar interactions was observed as the manganese concentration was increased.
In the [MnCl4]-2 system, solvent fluctuations and dynamical ion-pairing appear to be significant in determining electron spin relaxation.
In the [MnBr4]-2 system, solvent fluctuations, ion-pairing, and Br- ligand exchange provide the principal means of electron spin relaxation. It was also found that the spin relaxation in this system is dependent upon the field strength and is directly related to the manganese concentration. A relaxation theory based on a two state collisional model was developed to account for the observed behavior.