22 resultados para Apparatus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental Joule-Thomson measurements were made on gaseous propane at temperatures from 100 to 280˚F and at pressures from 8 to 66 psia. Joule-Thomson measurements were also made on gaseous n-butane at temperatures from 100 to 280˚ and at pressures from 8 to 42 psia. For propane, the values of these measurements ranged from 0.07986˚F/psi at 280˚F and 8.01 psia to 0.19685˚F/psi at 100˚F and 66.15 psia. For n-butane, the values ranged from 0.11031˚F/psi at 280˚F and 9.36 psia to 0.30141˚F/psi at 100˚F and 41.02 psia. The experimental values have a maximum error of 1.5 percent.

For n-butane, the measurements of this study did not agree with previous Joule-Thomson measurements made in the Laboratory in 1935. The application of a thermal-transfer correction to the previous experimental measurements would cause the two sets of data to agree. Calculated values of the Joule-Thomson coefficient from other types of p-v-t data did agree with the present measurements for n-butane.

The apparatus used to measure the experimental Joule-Thomson coefficients had a radial-flow porous thimble and was operated at pressure changes between 2.3 and 8.6 psi. The major difference between this and other Joule-Thomson apparatus was its larger weight rates of flow (up to 6 pounds per hour) at atmospheric pressure. The flow rate was shown to have an appreciable effect on non-isenthalpic Joule-Thomson measurements.

Photographic materials on pages 79-81 are essential and will not reproduced clearly on Xerox copies. Photographic copies should be ordered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I. PREAMBLE AND SCOPE

Brief introductory remarks, together with a definition of the scope of the material discussed in the thesis, are given.

II. A STUDY OF THE DYNAMICS OF TRIPLET EXCITONS IN MOLECULAR CRYSTALS

Phosphorescence spectra of pure crystalline naphthalene at room temperature and at 77˚ K are presented. The lifetime of the lowest triplet 3B1u state of the crystal is determined from measurements of the time-dependence of the phosphorescence decay after termination of the excitation light. The fact that this lifetime is considerably shorter in the pure crystal at room temperature than in isotopic mixed crystals at 4.2˚ K is discussed, with special importance being attached to the mobility of triplet excitons in the pure crystal.

Excitation spectra of the delayed fluorescence and phosphorescence from crystalline naphthalene and anthracene are also presented. The equation governing the time- and spatial-dependence of the triplet exciton concentration in the crystal is discussed, along with several approximate equations obtained from the general equation under certain simplifying assumptions. The influence of triplet exciton diffusion on the observed excitation spectra and the possibility of using the latter to investigate the former is also considered. Calculations of the delayed fluorescence and phosphorescence excitation spectra of crystalline naphthalene are described.

A search for absorption of additional light quanta by triplet excitons in naphthalene and anthracene crystals failed to produce any evidence for the phenomenon. This apparent absence of triplet-triplet absorption in pure crystals is attributed to a low steady-state triplet concentration, due to processes like triplet-triplet annihilation, resulting in an absorption too weak to be detected with the apparatus used in the experiments. A comparison of triplet-triplet absorption by naphthalene in a glass at 77˚ K with that by naphthalene-h8 in naphthalene-d8 at 4.2˚ K is given. A broad absorption in the isotopic mixed crystal triplet-triplet spectrum has been tentatively interpreted in terms of coupling between the guest 3B1u state and the conduction band and charge-transfer states of the host crystal.

III. AN INVESTIGATION OF DELAYED LIGHT EMISSION FROM Chlorella Pyrenoidosa

An apparatus capable of measuring emission lifetimes in the range 5 X 10-9 sec to 6 X 10-3 sec is described in detail. A cw argon ion laser beam, interrupted periodically by means of an electro-optic shutter, serves as the excitation source. Rapid sampling techniques coupled with signal averaging and digital data acquisition comprise the sensitive detection and readout portion of the apparatus. The capabilities of the equipment are adequately demonstrated by the results of a determination of the fluorescence lifetime of 5, 6, 11, 12-tetraphenyl-naphthacene in benzene solution at room temperature. Details of numerical methods used in the final data reduction are also described.

The results of preliminary measurements of delayed light emission from Chlorella Pyrenoidosa in the range 10-3 sec to 1 sec are presented. Effects on the emission of an inhibitor and of variations in the excitation light intensity have been investigated. Kinetic analysis of the emission decay curves obtained under these various experimental conditions indicate that in the millisecond-to-second time interval the decay is adequately described by the sum of two first-order decay processes. The values of the time constants of these processes appear to be sensitive both to added inhibitor and to excitation light intensity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I. ELECTROPHORESIS OF THE NUCLEIC ACIDS

A zone electrophoresis apparatus using ultraviolet optics has been constructed to study nucleic acids at concentrations less than 0.004%. Native DNA has a mobility about 15% higher than denatured DNA over a range of conditions. Otherwise, the electrophoretic mobility is independent of molecular weight, base composition or source. DNA mobilities change in the expected way with pH but the fractional change in mobility is less than the calculated change in charge. A small decrease in mobility accompanies an increase in ionic strength. RNA’s from various sources have mobilities slightly lower than denatured DNA except for s-RNA which travels slightly faster. The important considerations governing the mobility of nucleic acids appear to be the nature of the hydrodynamic segment, and the binding of counterions. The differences between electrophoresis and sedimentation stem from the fact that all random coil polyelectrolytes are fundamentally free draining in electrophoresis.

II. THE CYTOCHROME C/DNA COMPLEX

The basic protein, cytochrome c, has been complexed to DNA. Up to a cytochrome:DNA mass ratio of 2, a single type of complex is formed. Dissociation of this complex occurs between 0.05F and 0.1F NaCl. The complexing of cytochrome to DNA causes a slight increase in the melting temperature of the DNA, and a reduction of the electrophoretic mobility proportional to the decrease in net charge. Above a cytochrome:DNA mass ratio of 2.5, a different type of complex is formed. The results suggest that complexes such as are formed in the Kleinschmidt technique of electron microscopy would not exist in bulk solution and are exclusively film phenomena.

III. STUDIES OF THE ELECTROPHORESIS AND MELTING BEHAVIOUR OF NUCLEOHISTONES

Electrophoresis studies on reconstituted nucleohistones indicate that the electrophoretic mobility for these complexes is a function of the net charge of the complex. The mobility is therefore dependent on the charge density of the histone complexing the DNA, as well as on the histone/DNA ratio. It is found that the different histones affect the transition from native to denatured DNA in different ways. It appears that histone I is exchanging quite rapidly between DNA molecules in 0.01 F salt, while histone II is irreversibly bound. Histone III-IV enhances the capacity of non-strand separated denatured DNA to reanneal. Studies on native nucleoproteins indicate that there are no gene-sized uncomplexed DNA regions in any preparations studied.

IV. THE DISSOCIATION OF HISTONE FROM CALF THYMUS CROMATIN

Calf thymus nucleoprotein was treated with varying concentrations of NaCl. The identity of the histones associated and dissociated from the DNA at each salt concentration was determined by gel electrophoresis. It was found that there is no appreciable histone dissociation below 0.4 F NaCl. The lysine rich histones dissociate between 0.4 and 0.5 F NaCl. Their dissociation is accompanies by a marked increase in the solubility of the chromatin. The moderately lysine rich histones dissociate mainly between 0.8 and 1.1 F NaCl. There are two arginine rich histone components: the first dissociates between 0.8 F and 1.1 F NaCl, but the second class is the very last to be dissociated from the DNA (dissociation beginning at 1.0 F NaCl). By 2.0 F NaCl, essentially all the histones are dissociated.

The properties of the extracted nucleoprotein were studied. The electrophoretic mobility increases and the melting temperature decreases as more histones are dissociated from the DNA. A comparison with the dissociation of histones from DNA in NaClO4 shows that to dissociate the same class of histones, the concentration of NaCl required is twice that of NaClO4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part I.

The interaction of a nuclear magnetic moment situated on an internal top with the magnetic fields produced by the internal as well as overall molecular rotation has been derived following the method of Van Vleck for the spin-rotation interaction in rigid molecules. It is shown that the Hamiltonian for this problem may be written

HSR = Ῑ · M · Ĵ + Ῑ · M” · Ĵ”

Where the first term is the ordinary spin-rotation interaction and the second term arises from the spin-internal-rotation coupling.

The F19 nuclear spin-lattice relaxation time (T1) of benzotrifluoride and several chemically substituted benzotrifluorides, have been measured both neat and in solution, at room temperature by pulsed nuclear magnetic resonance. From these experimental results it is concluded that in benzotrifluoride the internal rotation is crucial to the spin relaxation of the fluorines and that the dominant relaxation mechanism is the fluctuating spin-internal-rotation interaction.

Part II.

The radiofrequency spectrum corresponding to the reorientation of the F19 nuclear moment in flurobenzene has been studied by the molecular beam magnetic resonance method. A molecular beam apparatus with an electron bombardment detector was used in the experiments. The F19 resonance is a composite spectrum with contributions from many rotational states and is not resolved. A detailed analysis of the resonance line shape and width by the method of moments led to the following diagonal components of the fluorine spin-rotational tensor in the principal inertial axis system of the molecule:

F/Caa = -1.0 ± 0.5 kHz

F/Cbb = -2.7 ± 0.2 kHz

F/Ccc = -1.9 ± 0.1 kHz

From these interaction constants, the paramagnetic contribution to the F19 nuclear shielding in C6H5F was determined to be -284 ± ppm. It was further concluded that the F19 nucleus in this molecule is more shielded when the applied magnetic field is directed along the C-F bond axis. The anisotropy of the magnetic shielding tensor, σ - σ, is +160 ± 30 ppm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigations described herein are both experimental and theoretical. An experimental technique is described by which the models tested could be oscillated sinusoidally in heave. The apparatus used to gather the unsteady lift, drag and pitching moment data is also described.

The models tested were two flat delta wings with apex angles of 15° and 30° and they had sharp leading edges to insure flow separation. The models were fabricated from 0.25 inch aluminum plate and were approximately one foot in length.

Three distinct types of flow were investigated: 1) fully wetted, 2) ventilated and 3) planing. The experimental data are compared with existing theories for steady motions in the case of fully wetted delta wings. Ventilation measurements, made only for the 30° model at 20° angle of attack, of lift and drag are presented.

A correction of the theory proposed by M.P. Tulin for high speed planing of slender bodies is presented and it is extended to unsteady motions. This is compared to the experimental measurements made at 6° and 12° angle of attack for the two models previously described.

This is the first extensive measurement of unsteady drag for any shape wing, the first measurement of unsteady planing forces, the first quantitative documentation of unstable oscillations near a free surface, and the first measurements of the unsteady forces on ventilated delta wings. The results of these investigations, both theoretical and experimental, are discussed and further investigations suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A review of the theory of electron scattering indicates that low incident beam energies and large scattering angles are the favorable conditions for the observation of optically forbidden transitions in atoms and molecules.

An apparatus capable of yielding electron impact spectra at 90° with incident electron beam energies between 30 and 50 electron volts is described. The resolution of the instrument is about 1 electron volt.

Impact spectra of thirteen molecules have been obtained. Known forbidden transitions to the helium 23S, the hydrogen b3Ʃ+u, the nitrogen A3Ʃ+u, B3πg, a’πg, and C3πu, the carbon monoxide a3π, the ethylene ᾶ3B1u, and the benzene ᾶ3B1u states from the corresponding ground states have been observed.

In addition, singlet-triplet vertical transitions in acetylene, propyne, propadiene, norbornadiene and quadricyclene, peaking at 5.9, 5.9, 4.5, 3.8, and 4.0 ev (±0.2 ev), respectively, have been observed and assigned for the first time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The time distribution of the decays of an initially pure K° beam into π+π-π° has been analyzed to determine the complex parameter W (also known as Ƞ+-° and (x + iy)). The K° beam was produced in a brass target by the interactions of a 2.85 GeV/c π- beam which was generated on an internal target in the Lawrence Radiation Laboratory (LRL) Bevatron. The counters and hodoscopes in the apparatus selected for events with a neutral (K°) produced in the brass target, two charged secondaries passing through a magnet spectrometer and a ɣ-ray shower in a shower hodoscope.

From the 275K apparatus triggers, 148 K → π+π-π° events were isolated. The presence of a ɣ-ray shower in the optical shower chambers and a two-prong vee in the optical spark chambers were devices used to isolate the events. The backgrounds were further reduced by reconstructing the momenta of the two charged secondaries and applying kinematic constraints.

The best fit to the final sample of 148 events distributed between .3 and 7.0 KS lifetimes gives:

ReW = -.05 ±.17

ImW = +.39 +.35/-.37

This result is consistent with both CPT invariance (ReW = 0) and CP invariance (W = 0). Backgrounds are estimated to be less than 10% and systematic effects have also been estimated to be negligible.

An analysis of the present data on CP violation in this decay mode and other K° decay modes has estimated the phase of ɛ to be 45.3 ± 2.3 degrees. This result is consistent with the super weak theories of CP violation which predicts the phase of ɛ to be 43°. This estimate is in turn used to predict the phase of Ƞ°° to be 48.0 ± 7.9 degrees. This is a substantial improvement on presently available measurements. The largest error in this analysis comes from the present limits on W from the world average of recent experiments. The K → πuʋ mode produces the next largest error. Therefore further experimentation in these modes would be useful.