2 resultados para eventi, connessioni, Node JS, event loop, thread, aggregazione
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
O objetivo deste trabalho é conhecer e compreender melhor os imprevistos no fornecimento de energia elétrica, quando ocorrem as variações de tensão de curta duração (VTCD). O banco de dados necessário para os diagnósticos das faltas foi obtido através de simulações de um modelo de alimentador radial através do software PSCAD/EMTDC. Este trabalho utiliza um Phase-Locked Loop (PLL) com o intuito de detectar VTCDs e realizar a estimativa automática da frequência, do ângulo de fase e da amplitude das tensões e correntes da rede elétrica. Nesta pesquisa, desenvolveram-se duas redes neurais artificiais: uma para identificar e outra para localizar as VTCDs ocorridas no sistema de distribuição de energia elétrica. A técnica aqui proposta aplica-se a alimentadores trifásicos com cargas desequilibradas, que podem possuir ramais laterais trifásicos, bifásicos e monofásicos. No desenvolvimento da mesma, considera-se que há disponibilidade de medições de tensões e correntes no nó inicial do alimentador e também em alguns pontos esparsos ao longo do alimentador de distribuição. Os desempenhos das arquiteturas das redes neurais foram satisfatórios e demonstram a viabilidade das RNAs na obtenção das generalizações que habilitam o sistema para realizar a classificação de curtos-circuitos.
Resumo:
O objetivo deste trabalho é contribuir com o desenvolvimento de uma técnica baseada em sistemas inteligentes que possibilite a localização exata ou aproximada do ponto de origem de uma Variação de Tensão de Curta Duração (VTCD) (gerada por uma falta) em um sistema de distribuição de energia elétrica. Este trabalho utiliza um Phase-Locked Loop (PLL) com o intuito de detectar as faltas. Uma vez que a falta é detectada, os sinais de tensão obtidos durante a falta são decompostos em componentes simétricas instantâneas por meio do método proposto. Em seguida, as energias das componentes simétricas são calculadas e utilizadas para estimar a localização da falta. Nesta pesquisa, são avaliadas duas estruturas baseadas em Redes Neurais Artificiais (RNAs). A primeira é projetada para classificar a localização da falta em um dos pontos possíveis e a segunda é projetada para estimar a distância da falta ao alimentador. A técnica aqui proposta aplica-se a alimentadores trifásicos com cargas equilibradas. No desenvolvimento da mesma, considera-se que há disponibilidade de medições de tensões no nó inicial do alimentador e também em pontos esparsos ao longo da rede de distribuição. O banco de dados empregado foi obtido através de simulações de um modelo de alimentador radial usando o programa PSCAD/EMTDC. Testes de sensibilidade empregando validação-cruzada são realizados em ambas as arquiteturas de redes neurais com o intuito de verificar a confiabilidade dos resultados obtidos. Adicionalmente foram realizados testes com faltas não inicialmente contidas no banco de dados a fim de se verificar a capacidade de generalização das redes. Os desempenhos de ambas as arquiteturas de redes neurais foram satisfatórios e demonstram a viabilidade das técnicas propostas para realizar a localização de faltas em redes de distribuição.