21 resultados para Matemática, especialidade de Análise Matemática
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
Nos dias atuais, a maioria das operações feitas por empresas e organizações é armazenada em bancos de dados que podem ser explorados por pesquisadores com o objetivo de se obter informações úteis para auxílio da tomada de decisão. Devido ao grande volume envolvido, a extração e análise dos dados não é uma tarefa simples. O processo geral de conversão de dados brutos em informações úteis chama-se Descoberta de Conhecimento em Bancos de Dados (KDD - Knowledge Discovery in Databases). Uma das etapas deste processo é a Mineração de Dados (Data Mining), que consiste na aplicação de algoritmos e técnicas estatísticas para explorar informações contidas implicitamente em grandes bancos de dados. Muitas áreas utilizam o processo KDD para facilitar o reconhecimento de padrões ou modelos em suas bases de informações. Este trabalho apresenta uma aplicação prática do processo KDD utilizando a base de dados de alunos do 9 ano do ensino básico do Estado do Rio de Janeiro, disponibilizada no site do INEP, com o objetivo de descobrir padrões interessantes entre o perfil socioeconômico do aluno e seu desempenho obtido em Matemática na Prova Brasil 2011. Neste trabalho, utilizando-se da ferramenta chamada Weka (Waikato Environment for Knowledge Analysis), foi aplicada a tarefa de mineração de dados conhecida como associação, onde se extraiu regras por intermédio do algoritmo Apriori. Neste estudo foi possível descobrir, por exemplo, que alunos que já foram reprovados uma vez tendem a tirar uma nota inferior na prova de matemática, assim como alunos que nunca foram reprovados tiveram um melhor desempenho. Outros fatores, como a sua pretensão futura, a escolaridade dos pais, a preferência de matemática, o grupo étnico o qual o aluno pertence, se o aluno lê sites frequentemente, também influenciam positivamente ou negativamente no aprendizado do discente. Também foi feita uma análise de acordo com a infraestrutura da escola onde o aluno estuda e com isso, pôde-se afirmar que os padrões descobertos ocorrem independentemente se estes alunos estudam em escolas que possuem infraestrutura boa ou ruim. Os resultados obtidos podem ser utilizados para traçar perfis de estudantes que tem um melhor ou um pior desempenho em matemática e para a elaboração de políticas públicas na área de educação, voltadas ao ensino fundamental.
Resumo:
O processo de recuperação secundária de petróleo é comumente realizado com a injeção de água ou gás no reservatório a fim de manter a pressão necessária para sua extração. Para que o investimento seja viável, os gastos com a extração precisam ser menores do que o retorno financeiro obtido com a produção de petróleo. Objetivando-se estudar possíveis cenários para o processo de exploração, costuma-se utilizar simulações dos processos de extração. As equações que modelam esse processo de recuperação são de caráter hiperbólico e não lineares, as quais podem ser interpretadas como Leis de Conservação, cujas soluções são complexas por suas naturezas descontínuas. Essas descontinuidades ou saltos são conhecidas como ondas de choque. Neste trabalho foi abordada uma análise matemática para os fenômenos oriundos de leis de conservação, para em seguida utilizá-la no entendimento do referido problema. Foram estudadas soluções fracas que, fisicamente, podem ser interpretadas como ondas de choque ou rarefação, então, para que fossem distinguidas as fisicamente admissíveis, foi considerado o princípio de entropia, nas suas diversas formas. As simulações foram realizadas nos âmbitos dos escoamentos bifásicos e trifásicos, em que os fluidos são imiscíveis e os efeitos gravitacionais e difusivos, devido à pressão capilar, foram desprezados. Inicialmente, foi feito um estudo comparativo de resoluções numéricas na captura de ondas de choque em escoamento bifásico água-óleo. Neste estudo destacam-se o método Composto LWLF-k, o esquema NonStandard e a introdução da nova função de renormalização para o esquema NonStandard, onde obteve resultados satisfatórios, principalmente em regiões onde a viscosidade do óleo é muito maior do que a viscosidade da água. No escoamento bidimensional, um novo método é proposto, partindo de uma generalização do esquema NonStandard unidimensional. Por fim, é feita uma adaptação dos métodos LWLF-4 e NonStandard para a simulação em escoamentos trifásicos em domínios unidimensional. O esquema NonStandard foi considerado mais eficiente nos problemas abordados, uma vez que sua versão bidimensional mostrou-se satisfatória na captura de ondas de choque em escoamentos bifásicos em meios porosos.
Resumo:
A presente dissertação propõe uma abordagem alternativa na simulação matemática de um cenário preocupante em ecologia: o controle de pragas nocivas a uma dada lavoura de soja em uma específica região geográfica. O instrumental teórico empregado é a teoria dos jogos, de forma a acoplar ferramentas da matemática discreta à análise e solução de problemas de valor inicial em equações diferenciais, mais especificamente, as chamadas equações de dinâmica populacional de Lotka-Volterra com competição. Essas equações, que modelam o comportamento predador-presa, possuem, com os parâmetros inicialmente utilizados, um ponto de equilíbrio mais alto que o desejado no contexto agrícola sob exame, resultando na necessidade de utilização da teoria do controle ótimo. O esquema desenvolvido neste trabalho conduz a ferramentas suficientemente simples, de forma a tornar viável o seu uso em situações reais. Os dados utilizados para o tratamento do problema que conduziu a esta pesquisa interdisciplinar foram coletados de material bibliográfico da Empresa Brasileira de Pesquisa Agropecuária EMBRAPA.
Resumo:
O conceito de objetividade é central na epistemologia de Gaston Bachelard (1884-1962). O problema que a pesquisa busca solucionar é a definição de objetividade na filosofia bachelardiana, o que implica na necessidade de explicitar a relação entre a objetividade e a matemática. A partir da leitura e da análise da obra epistemológica de Bachelard que trata da questão da objetividade, é demonstrado que o filósofo utiliza dois diferentes conceitos de objetividade: o primeiro é o de objetividade como reconhecimento e afastamento dos obstáculos epistemológicos que se apresentam como imagens subjetivas na prática científica; o segundo conceito é o de objetividade como o processo de retificação do conhecimento científico. Apresenta-se um exemplo de objetivação: o conceito de substância, no sentido realista ingênuo, desaparece nas ciências físicas do século XX, e surge o conceito complexo de um átomo não substancial, mas matemático. A partir desse exemplo, é demonstrado que, para Bachelard, o processo de objetivação do conhecimento é sincrônico ao processo de matematização do objeto. e a razão para essa relação entre a matematização e a objetivação é explicada.
Resumo:
No presente trabalho foram utilizados modelos de classificação para minerar dados relacionados à aprendizagem de Matemática e ao perfil de professores do ensino fundamental. Mais especificamente, foram abordados os fatores referentes aos educadores do Estado do Rio de Janeiro que influenciam positivamente e negativamente no desempenho dos alunos do 9 ano do ensino básico nas provas de Matemática. Os dados utilizados para extrair estas informações são disponibilizados pelo Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira que avalia o sistema educacional brasileiro em diversos níveis e modalidades de ensino, incluindo a Educação Básica, cuja avaliação, que foi foco deste estudo, é realizada pela Prova Brasil. A partir desta base, foi aplicado o processo de Descoberta de Conhecimento em Bancos de Dados (KDD - Knowledge Discovery in Databases), composto das etapas de preparação, mineração e pós-processamento dos dados. Os padrões foram extraídos dos modelos de classificação gerados pelas técnicas árvore de decisão, indução de regras e classificadores Bayesianos, cujos algoritmos estão implementados no software Weka (Waikato Environment for Knowledge Analysis). Além disso, foram aplicados métodos de grupos e uma metodologia para tornar as classes uniformemente distribuídas, afim de melhorar a precisão dos modelos obtidos. Os resultados apresentaram importantes fatores que contribuem para o ensino-aprendizagem de Matemática, assim como evidenciaram aspectos que comprometem negativamente o desempenho dos discentes. Por fim, os resultados extraídos fornecem ao educador e elaborador de políticas públicas fatores para uma análise que os auxiliem em posteriores tomadas de decisão.
Resumo:
Esta pesquisa realiza um estudo sobre a formação de professores em Física, Química e Matemática na dimensão das políticas públicas educacionais e das novas ordenações do mundo produtivo. O eixo metodológico investe na abordagem qualitativa, elegendo como campo empírico o Instituto de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), mais especificamente, o campus Nilópolis, localizado na região da Baixada Fluminense (recorte geopolítico), no Estado do Rio de Janeiro. A técnica de pesquisa baseou-se na realização de entrevistas com licenciandos cujo perfil compreende àquele que tenha realizado atividades de estágio docente. Esta escolha justifica-se por ser este o perfil de estudante mais próximo do término do curso e que, principalmente, através desta experiência, apresenta concepções, ainda que iniciais, da realidade da educação básica. Este estudo investiu na história dos sujeitos participantes através de seus respectivos relatos, onde foi possível categorizá-los em importantes aspectos que se interconectam: 1) na análise das políticas públicas para a educação superior a partir da ênfase na investigação de como estas se efetivam em uma territorialidade e no contexto de uma nova institucionalidade; 2) na reflexão sobre o impacto das transformações do mundo do trabalho na subjetividade dos licenciandos, engendrando a possível atividade docente no cenário de crise de identidades profissionais; e 3) no exame da realidade das escolas da educação básica, espaço onde a formação se destina. Este caminho permitiu refletir sobre o lugar do magistério nas escolhas de formação e nas perspectivas profissionais.
Resumo:
Os principais constituintes do ar, nitrogênio, oxigênio e argônio, estão cada vez mais presentes nas indústrias, onde são empregados nos processos químicos, para o transporte de alimentos e processamento de resíduos. As duas principais tecnologias para a separação dos componentes do ar são a adsorção e a destilação criogênica. Entretanto, para ambos os processos é necessário que os contaminantes do ar, como o gás carbônico, o vapor dágua e hidrocarbonetos, sejam removidos para evitar problemas operacionais e de segurança. Desta forma, o presente trabalho trata do estudo do processo de pré-purificação de ar utilizando adsorção. Neste sistema a corrente de ar flui alternadamente entre dois leitos adsorvedores para produzir ar purificado continuamente. Mais especificamente, o foco da dissertação corresponde à investigação do comportamento de unidades de pré-purificação tipo PSA (pressure swing adsorption), onde a etapa de dessorção é realizada pela redução da pressão. A análise da unidade de pré-purificação parte da modelagem dos leitos de adsorção através de um sistema de equações diferenciais parciais de balanço de massa na corrente gasosa e no leito. Neste modelo, a relação de equilíbrio relativa à adsorção é descrita pela isoterma de Dubinin-Astakhov estendida para misturas multicomponentes. Para a simulação do modelo, as derivadas espaciais são discretizadas via diferenças finitas e o sistema de equações diferenciais ordinárias resultante é resolvido por um solver apropriado (método das linhas). Para a simulação da unidade em operação, este modelo é acoplado a um algoritmo de convergência relativo às quatro etapas do ciclo de operação: adsorção, despressurização, purga e dessorção. O algoritmo em questão deve garantir que as condições finais da última etapa são equivalentes às condições iniciais da primeira etapa (estado estacionário cíclico). Desta forma, a simulação foi implementada na forma de um código computacional baseado no ambiente de programação Scilab (Scilab 5.3.0, 2010), que é um programa de distribuição gratuita. Os algoritmos de simulação de cada etapa individual e do ciclo completo são finalmente utilizados para analisar o comportamento da unidade de pré-purificação, verificando como o seu desempenho é afetado por alterações nas variáveis de projeto ou operacionais. Por exemplo, foi investigado o sistema de carregamento do leito que mostrou que a configuração ideal do leito é de 50% de alumina seguido de 50% de zeólita. Variáveis do processo foram também analisadas, a pressão de adsorção, a vazão de alimentação e o tempo do ciclo de adsorção, mostrando que o aumento da vazão de alimentação leva a perda da especificação que pode ser retomada reduzindo-se o tempo do ciclo de adsorção. Mostrou-se também que uma pressão de adsorção maior leva a uma maior remoção de contaminantes.
Resumo:
Este trabalho apresenta um estudo teórico e numérico sobre os erros que ocorrem nos cálculos de gradientes em malhas não estruturadas constituídas pelo diagrama de Voronoi, malhas estas, formadas também pela triangulação de Delaunay. As malhas adotadas, no trabalho, foram as malhas cartesianas e as malhas triangulares, esta última é gerada pela divisão de um quadrado em dois ou quatro triângulos iguais. Para tal análise, adotamos a escolha de três metodologias distintas para o cálculo dos gradientes: método de Green Gauss, método do Mínimo Resíduo Quadrático e método da Média do Gradiente Projetado Corrigido. O texto se baseia em dois enfoques principais: mostrar que as equações de erros dadas pelos gradientes podem ser semelhantes, porém com sinais opostos, para pontos de cálculos em volumes vizinhos e que a ordem do erro das equações analíticas pode ser melhorada em malhas uniformes quando comparada as não uniformes, nos casos unidimensionais, e quando analisada na face de tais volumes vizinhos nos casos bidimensionais.
Análise global da estabilidade termodinâmica de misturas: um estudo com o método do conjunto gerador
Resumo:
O cálculo do equilíbrio de fases é um problema de grande importância em processos da engenharia, como, por exemplo, na separação por destilação, em processos de extração e simulação da recuperação terciária de petróleo, entre outros. Mas para resolvê-lo é aconselhável que se estude a priori a estabilidade termodinâmica do sistema, a qual consiste em determinar se uma dada mistura se apresenta em uma ou mais fases. Tal problema pode ser abordado como um problema de otimização, conhecido como a minimização da função distância do plano tangente à energia livre de Gibbs molar, onde modelos termodinâmicos, de natureza não convexa e não linear, são utilizados para descrevê-lo. Esse fato tem motivado um grande interesse em técnicas de otimização robustas e eficientes para a resolução de problemas relacionados com a termodinâmica do equilíbrio de fases. Como tem sido ressaltado na literatura, para proporcionar uma completa predição do equilíbrio de fases, faz-se necessário não apenas a determinação do minimizador global da função objetivo do teste de estabilidade, mas também a obtenção de todos os seus pontos estacionários. Assim, o desenvolvimento de metodologias para essa tarefa desafiadora tem se tornado uma nova área de pesquisa da otimização global aplicada à termodinâmica do equilíbrio, com interesses comuns na engenharia química e na engenharia do petróleo. O foco do presente trabalho é uma nova metodologia para resolver o problema do teste de estabilidade. Para isso, usa-se o chamado método do conjunto gerador para realizar buscas do tipo local em uma rede de pontos previamente gerada por buscas globais efetuadas com uma metaheurística populacional, no caso o método do enxame de partículas.Para se obter mais de um ponto estacionário, minimizam-se funções de mérito polarizadas, cujos pólos são os pontos previamente encontrados. A metodologia proposta foi testada na análise de quatorze misturas polares previamente consideradas na literatura. Os resultados mostraram que o método proposto é robusto e eficiente a ponto de encontrar, além do minimizador global, todos os pontos estacionários apontados previamente na literatura, sendo também capaz de detectar, em duas misturas ternárias estudadas, pontos estacionários não obtidos pelo chamado método de análise intervalar, uma técnica confiável e muito difundida na literatura. A análise do teste de estabilidade pela simples utilização do método do enxame de partículas associado à técnica de polarização mencionada acima, para a obtenção de mais de um ponto estacionário (sem a busca local feita pelo método do conjunto gerador em uma dada rede de pontos), constitui outra metodologia para a resolução do problema de interesse. Essa utilização é uma novidade secundária deste trabalho. Tal metodologia simplificada exibiu também uma grande robustez, sendo capaz de encontrar todos os pontos estacionários pesquisados. No entanto, quando comparada com a abordagem mais geral proposta aqui, observou-se que tal simplificação pode, em alguns casos onde a função de mérito apresenta uma geometria mais complexa, consumir um tempo de máquina relativamente grande, dessa forma é menos eficiente.
Resumo:
Qual a Filosofia da Natureza que podemos inferir da Física Contemporânea? Para Werner Karl Heisenberg, prêmio Nobel de Física de 1932, a ontologia da Ciência Moderna, estruturada no materialismo, no mecanicismo e no determinismo já não pode servir de fundamento para a nova Física. Esta requer uma nova base ontológica, onde o antirrealismo, seguido de um formalismo puro, aparece como o princípio basilar de uma nova Filosofia Natural. Este trabalho visa investigar o pensamento filosófico, a ontologia antirrealista, formalista, a abordagem da tradição filosófica e da história da ciência de Werner Heisenberg e sua contribuição para a interpretação da mecânica quântica.
Resumo:
Esta dissertação é o resultado do meu verouvirsentir e busca evidenciar que, nas relações desenvolvidas no processo do ensino da matemática, as histórias em quadrinhos podem-se revelar um instrumento eficaz para a aplicação de uma metodologia alternativa dotada de uma potência extraordinária na interlocução entre a criança e o conteúdo matemático. Nesse contexto, um dos maiores argumentos que encontro, ao final desta jornada, é que fica a percepção de que o livro didático adotado (referência para o conteúdo teoricoprático), em quase sua totalidade, não favorece que os alunos estabeleçam uma relação com a matemática pautada na atenção, curiosidade, alegria e outros fatores/elementos que permitam o crescimento cognitivo desses alunos na referida disciplina. A pesquisa é realizadasentida em uma escola particular de ensino fundamental e médio situada em Realengo em três turmas de 6 ano. Esses alunos variam entre 10 e 13 anos de idade e aproximadamente 90% deles são oriundos de famílias de classe média. Para realizarsentir esta pesquisa, percebo que, fundamentalmente, faço uso de duas metodologias que se revelam a priori: pesquisa-ação e o mergulho (ALVES, 2008). Realizo alguns diálogos que se consolidam como aporte teórico e que norteiam toda a minha escrita. Esses diálogos podem ou não aparecer nas citações que faço. Os diálogos invisibilizados pela minha escrita de modo algum foram menos importantes e tampouco são considerados menos relevantes, na verdade, conduzem minha escrita, misturando-se em minhas próprias palavras a ponto de se tornarem indissociáveis. Nesses diálogos, encontro-me com Michel de Certeau, Paulo Sgarbi, Nilda Alves, Humberto Maturana, Inês Barbosa, Von Foerster, Michel Focault, Edgard Morin, Will Eisner, Ginsburg, entre outros. Como resultados, ficou evidenciado que, ao oferecer a possibilidade de reescrita da teoria matemática através das histórias em quadrinhos, os alunos (na sua maioria) desenvolveram uma capacidade maior de concentração, atenção aos detalhes da própria teoria e a diminuição significativa da resistência ao conteúdo matemático. Uma velhanova linguagem? Em um velhonovo meio? Seja qual for a conclusão, a aventura do desafio na busca da construção de uma nova relação entre a criança e a matemática, por si só, permite a exposição de tensões e oportuniza o crescimento de todos. Nessa jornada, de ação em ação, busco fazer algo significativo.
Resumo:
Este trabalho apresenta uma modelagem matemática para o processo de aquecimento de um corpo exposto a uma fonte pontual de radiação térmica. O resultado original que permite a solução exata de uma equação diferencial parcial não linear a partir de uma seqüência de problemas lineares também é apresentado. Gráficos gerados com resultados obtidos pelo método de diferenças finitas ilustram a solução do problema proposto.
Resumo:
O presente estudo teve como objetivo geral compreender o processo de aprendizagem da matemática de estudantes durante o ciclo de alfabetização na cidade do Rio de Janeiro. Para isso, fez-se uso dos dados de uma pesquisa longitudinal, denominada Estudo Longitudinal da Geração Escolar 2005 GERES 2005. Esta Pesquisa consistiu em um estudo de painel que acompanhou ao longo de quatro anos consecutivos (de 2005 a 2008) uma amostra de estudantes do primeiro segmento do Ensino Fundamental (1 à 4 série e/ou 2 ao 5 ano) em cinco cidades brasileiras - Rio de Janeiro, Belo Horizonte, Campinas, Campo Grande e Salvador, por meio de testes de Matemática e Leitura aplicados aos estudantes e de questionários contextuais aplicados a seus professores, aos diretores das escolas, e aos pais. Especificamente o estudo concentrou-se sobre os dados referentes à rede municipal do Rio de Janeiro e mais especificamente ao período correspondente ao ciclo de alfabetização. Foram analisados os resultados médios em matemática dos estudantes nas três primeiras Ondas de avaliação e o percentual de acertos nos itens comuns a essas Ondas, com o intuito de verificar a evolução da aprendizagem em matemática ao longo do início da escolarização nos anos iniciais. Dentre os principais resultados da pesquisa foi possível perceber certa fragilidade na construção dos conceitos matemáticos básico dos anos iniciais, evidenciando que possivelmente a construção da linguagem matemática encontra-se aquém do esperado para os estudantes no início de sua formação matemática. Possivelmente, estes resultados reflitam uma prática comum nas escolas em que a ênfase do processo de aprendizagem esteja centrada em processos individuais, em contextos pouco familiares à criança, além da proposição de atividades que pouco exploram o raciocínio lógico e dedutivo do aluno, ou seja, o pensar sobre de forma lúdica e criativa. Tudo isso tem contribuído para aumentar a distância entre estudantes de diferentes classes sociais ou diferentes redes de ensino.
Resumo:
A noção de rede social e os métodos em análise em redes sociais (ARS) tem atraído considerável interesse e curiosidade para a comunidade científica nestas últimas décadas, assim como a crescente fascinação pública sobre as relações mais complexas da sociedade moderna. A ARS está baseada na importância de relações entre a interação de unidades. Numa análise de rede social a observação dos atributos sociais de um ator pode ser entendida como padrão ou como uma estrutura de relação entre as unidades. Desta forma, quando empregados a uma perspectiva de rede, é possível estudar os padrões de estruturas relacionais diretamente, sem referência a atributos dos indivíduos envolvidos. Na análise convencional de redes sociais a distância geográfica (ou geoespacial) não tem efeito mapeado na rede. Quando utilizada, esta informação normalmente adquire caráter de um atributo complementar associado individualmente a cada ator (ou aglomerados de atores) da própria rede. O objetivo deste trabalho é demonstrar, numa escala local (de maneira mais granular) como o posicionamento geoespacial dos atores, considerado como elementos da rede, pode desvendar aspectos significativos do comportamento destes que não seriam revelados em análises convencionais. No estudo de caso utilizou-se ainda conceitos de outras disciplinas, como a Matemática e a Física, para verificar a capilaridade do fluxo da informação da rede em três perspectivas distintas: a social, a espacial e a socioespacial. O trabalho descreve o campo emergente de pesquisa em ARS, abordando também questões fundamentais sobre como estas diferentes perspectivas podem trazer resultados mais assertivos para orientar uma tomada de decisão no mercado.
Desenvolvimento do clube de história da matemática: um diálogo das ciências humanas com a matemática
Resumo:
Este trabalho apresenta uma pesquisa sobre a utilização da História da Matemática no ensino básico do Colégio Militar do Rio de Janeiro CMRJ através de manifestações artísticas, fazendo uso, principalmente, do teatro,para que alunos percebam a matemática como uma ciência temporal, humana e sujeita a interferências políticas e sociais e, dessa forma, desenvolver a criticidade, aumentar a sensibilidade e o senso de solidariedade. A partir de um tema da história envolvendo fatos matemáticos os alunos pesquisam, escrevem uma peça teatral e encenam para um público formado por pessoas da comunidade escolar. Como a intenção é tornar essa prática efetiva, a pesquisa culmina na fundação do Clube de História da Matemática, espaço onde, espera-se, atividades recorrentes sejamdesenvolvidas, atraindo alunos afetos tanto às ciências humanas e sociais como às ciências exatas. Realiza-se um estudo de caso com observação participante, por ser o autor também professor do CMRJ. Este estudo busca referência teórica principalmente em autores relacionados à História da Matemática, Arte na Educação, gestão democrática, relações de poder e na legislação vigente. A pesquisa aponta a importância do trabalho com a história e com a arte e nos leva a concluir que, para formar cidadãos participativos e críticos, o primeiro passo é a sociedade tornar-se participativa e crítica, sendo a escola o principal locuspara tal formação.