2 resultados para METODOS EXPERIMENTALES
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
Desde a década de 1960, devido à pertinência para a indústria petrolífera, a simulação numérica de reservatórios de petróleo tornou-se uma ferramenta usual e uma intensa área de pesquisa. O principal objetivo da modelagem computacional e do uso de métodos numéricos, para a simulação de reservatórios de petróleo, é o de possibilitar um melhor gerenciamento do campo produtor, de maneira que haja uma maximização na recuperação de hidrocarbonetos. Este trabalho tem como objetivo principal paralelizar, empregando a interface de programação de aplicativo OpenMP (Open Multi-Processing), o método numérico utilizado na resolução do sistema algébrico resultante da discretização da equação que descreve o escoamento monofásico em um reservatório de gás, em termos da variável pressão. O conjunto de equações governantes é formado pela equação da continuidade, por uma expressão para o balanço da quantidade de movimento e por uma equação de estado. A Equação da Difusividade Hidráulica (EDH), para a variável pressão, é obtida a partir deste conjunto de equações fundamentais, sendo então discretizada pela utilização do Método de Diferenças Finitas, com a escolha por uma formulação implícita. Diferentes testes numéricos são realizados a fim de estudar a eficiência computacional das versões paralelizadas dos métodos iterativos de Jacobi, Gauss-Seidel, Sobre-relaxação Sucessiva, Gradientes Conjugados (CG), Gradiente Biconjugado (BiCG) e Gradiente Biconjugado Estabilizado (BiCGStab), visando a uma futura aplicação dos mesmos na simulação de reservatórios de gás. Ressalta-se que a presença de heterogeneidades na rocha reservatório e/ou às não-linearidades presentes na EDH para o escoamento de gás aumentam a necessidade de métodos eficientes do ponto de vista de custo computacional, como é o caso de estratégias usando OpenMP.
Resumo:
Projetos de reatores nucleares foram classificados em quatro gerações (Gen) pelo Departamento de Energia dos Estados Unidos da América (DOE), quando o DOE introduziu o conceito de reatores de geração IV (Gen IV). Reatores Gen IV são um conjunto de projetos de reator nuclear, em sua maioria teóricos, atualmente sendo pesquisados. Entre os projetos Gen IV, incluem-se os projetos dos ADS (Accelerator Driven Systems), que são sistemas subcríticos estabilizados por fontes externas estacionárias de nêutrons. Estas fontes externas de nêutrons são normalmente geradas a partir da colisão de prótons com alta energia contra os núcleos de metais pesados presentes no núcleo do reator, fenômeno que é conhecido na literatura como spallation, e os prótons são acelerados num acelerador de partículas que é alimentado com parte da energia gerada pelo reator. A criticalidade de um sistema mantido por reações de fissão em cadeia depende do balanço entre a produção de nêutrons por fissão e a remoção por fuga pelos contornos e absorção de nêutrons. Um sistema está subcrítico quando a remoção por fuga e absorção ultrapassa a produção por fissão e, portanto, tende ao desligamento. Entretanto, qualquer sistema subcrítico pode ser estabilizado pela inclusão de fontes estacionárias de nêutrons em seu interior. O objetivo central deste trabalho é determinar as intensidades dessas fontes uniformes e isotrópicas de nêutrons, que se deve inserir em todas as regiões combustíveis do sistema, para que o mesmo estabilize-se gerando uma distribuição prescrita de potência elétrica. Diante do exposto, foi desenvolvido neste trabalho um aplicativo computacional em linguagem Java que estima as intensidades dessas fontes estacionárias de nêutrons, que devem ser inseridas em cada região combustível para que estabilizem o sistema subcrítico com uma dada distribuição de potência definida pelo usuário. Para atingir este objetivo, o modelo matemático adotado foi a equação unidimensional de transporte de nêutrons monoenergéticos na formulação de ordenadas discretas (SN) e o convencional método de malha fina diamond difference (DD) foi utilizado para resolver numericamente os problemas SN físicos e adjuntos. Resultados numéricos para dois problemas-modelos típicos são apresentados para ilustrar a acurácia e eficiência da metodologia proposta.