439 resultados para Equação de diferenças
em Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ
Resumo:
O presente trabalho trata do escoamento bifásico em meios porosos heterogêneos de natureza fractal, onde os fluidos são considerados imiscíveis. Os meios porosos são modelados pela equação de Kozeny-Carman Generalizada (KCG), a qual relaciona a porosidade com a permeabilidade do meio através de uma nova lei de potência. Esta equação proposta por nós é capaz de generalizar diferentes modelos existentes na literatura e, portanto, é de uso mais geral. O simulador numérico desenvolvido aqui emprega métodos de diferenças finitas. A evolução temporal é baseada em um esquema de separação de operadores que segue a estratégia clássica chamada de IMPES. Assim, o campo de pressão é calculado implicitamente, enquanto que a equação da saturação da fase molhante é resolvida explicitamente em cada nível de tempo. O método de otimização denominado de DFSANE é utilizado para resolver a equação da pressão. Enfatizamos que o DFSANE nunca foi usado antes no contexto de simulação de reservatórios. Portanto, o seu uso aqui é sem precedentes. Para minimizar difusões numéricas, a equação da saturação é discretizada por um esquema do tipo "upwind", comumente empregado em simuladores numéricos para a recuperação de petróleo, o qual é resolvido explicitamente pelo método Runge-Kutta de quarta ordem. Os resultados das simulações são bastante satisfatórios. De fato, tais resultados mostram que o modelo KCG é capaz de gerar meios porosos heterogêneos, cujas características permitem a captura de fenômenos físicos que, geralmente, são de difícil acesso para muitos simuladores em diferenças finitas clássicas, como o chamado fenômeno de dedilhamento, que ocorre quando a razão de mobilidade (entre as fases fluidas) assume valores adversos. Em todas as simulações apresentadas aqui, consideramos que o problema imiscível é bidimensional, sendo, portanto, o meio poroso caracterizado por campos de permeabilidade e de porosidade definidos em regiões Euclideanas. No entanto, a teoria abordada neste trabalho não impõe restrições para sua aplicação aos problemas tridimensionais.
Resumo:
Neste trabalho o processo não linear de transmissão de calor condução-radiação é abordado num contexto bidimensional plano e simulado com o uso de um esquema linear em diferenças finitas. O problema original é tratado como o limite de uma sequencia de problemas lineares, do tipo condução-convecção. Este limite, cuja existência é comprovada, é facilmente obtido a partir de procedimentos básicos, accessíveis a qualquer estudante de engenharia, permitindo assim o emprego de hipóteses mais realistas, já que não se tem o limitante matemático para a abordagem numérica de uma equação diferencial parcial elíptica. Neste trabalho foi resolvido o problema de condução de calor em regime permanente em uma placa com condições de contorno convectivas e radioativas utilizando-se o software MatLab, vale ressaltar, que a mesma metodologia é aplicável para geometrias mais complexas.
Resumo:
Apresenta-se uma abordagemnumérica para ummodelo que descreve a formação de padrões por sputtering iônico na superfície de ummaterial. Esse processo é responsável pela formação de padrões inesperadamente organizados, como ondulações, nanopontos e filas hexagonais de nanoburacos. Uma análise numérica de padrões preexistentes é proposta para investigar a dinâmica na superfície, baseada em ummodelo resumido em uma equação anisotrópica amortecida de Kuramoto-Sivashinsky, em uma superfície bidimensional com condições de contorno periódicas. Apesar de determinística, seu caráter altamente não-linear fornece uma rica gama de resultados, sendo possível descrever acuradamente diferentes padrões. Umesquema semi implícito de diferenças finitas com fatoração no tempo é aplicado na discretização da equação governante. Simulações foram realizadas com coeficientes realísticos relacionados aos parâmetros físicos (anisotropias, orientação do feixe, difusão). A estabilidade do esquema numérico foi analisada por testes de passo de tempo e espaçamento de malha, enquanto a verificação do mesmo foi realizada pelo Método das Soluções Manufaturadas. Ondulações e padrões hexagonais foram obtidos a partir de condições iniciais monomodais para determinados valores do coeficiente de amortecimento, enquanto caos espaço-temporal apareceu para valores inferiores. Os efeitos anisotrópicos na formação de padrões foramestudados, variando o ângulo de incidência.
Resumo:
O presente trabalho aborda um problema inverso associado a difus~ao de calor em uma barra unidimensional. Esse fen^omeno e modelado por meio da equac~ao diferencial par- cial parabolica ut = uxx, conhecida como equac~ao de difus~ao do calor. O problema classico (problema direto) envolve essa equac~ao e um conjunto de restric~oes { as condic~oes inicial e de contorno {, o que permite garantir a exist^encia de uma soluc~ao unica. No problema inverso que estudamos, o valor da temperatura em um dos extremos da barra n~ao esta disponvel. Entretanto, conhecemos o valor da temperatura em um ponto x0 xo no interior da barra. Para aproximar o valor da temperatura no intervalo a direita de x0, propomos e testamos tr^es algoritmos de diferencas nitas: diferencas regressivas, leap-frog e diferencas regressivas maquiadas.
Resumo:
A epidemia de HIV/AIDS, pelo seu histórico, é de natureza mutável em vários contextos sociais em todo o mundo. Desde a notificação dos primeiros casos até hoje, observa-se um curso diferenciado no decorrer do tempo, tanto no campo social como na biomedicina, o que a torna um problema passível de controle a longo prazo. Essas mudanças, entretanto, não são percebidas de igual maneira em todos os países ou regiões. Devido a vários fatores, a epidemia persiste como uma das dez primeiras causas de morte no mundo, sendo a primeira delas na África. No Brasil, o perfil da epidemia assemelha-se ao global, tendendo a diminuir/estabilizar a velocidade do surgimento de novos casos. Essa contenção deve-se ao impacto de ações preventivas desenvolvidas por iniciativas governamentais e não governamentais no sentido de promover práticas sexuais mais seguras. Neste mesmo contexto, algumas análises espaciais revelam transições demográficas da epidemia de HIV/AIDS nos anos mais recentes. Há mudanças e desigualdades na razão de sexo em diferentes condições sociodemográficas e do ponto de vista geracional. Em razão disso, este trabalho justifica-se pela necessidade de analisar as mudanças na razão de sexo, fornecendo informações importantes para o planejamento e política de prevenção no tratamento da AIDS, tendo em vista a vulnerabilidade da população feminina. O objetivo principal desta pesquisa é analisar diferenças históricas, espaciais e sociais da razão de sexo e idade na população internada pelo SUS em consequência da infecção pelo HIV no período de 1998 a 2009. Trata-se de um estudo descritivo e ecológico das diferenças históricas, espaciais e por grupos de idade na Razão de Sexo abrangendo também uma análise da Regressão Linear Múltipla das variáveis. Foram utilizados os dados do Sistema de Informações Hospitalares do SUS-SIH/SUS - DATASUS/MS, como fonte de informação para os casos de AIDS internados no período de 1998 a 2009. Foram considerados casos com idade compreendida entre 15 e 49 anos, bem como estratificados e analisados dados gerados nas microrregiões, a fim de homogeneizar as informações dentro de cada estrato com dados do censo de 2000. As variáveis independentes foram representadas pelos seguintes indicadores (fatores de vulnerabilidade): a) percentagem da população rural residente na região; b) tamanho da população da microrregião, para testar se o tamanho da população está associado à razão de sexo por HIV e c) percentagem da população de 15 a 49 anos de idade não alfabetizada. Nos resultados é possível notar que em quase todas as regiões há um aumento considerável do número de mulheres infectadas pelo HIV, o que leva à dedução da presença de um processo de feminização, atrelado à heterossexualização da epidemia. Os resultados do estudo apontam que a epidemia de HIV/AIDS tende a atingir indiscriminadamente as regiões Nordeste, Sul e Sudeste, especialmente as duas últimas. Esta constatação de que, em anos recentes, as mulheres vêm sendo infectadas em proporções maiores que os homens, corrobora o processo de feminização da AIDS, já anunciado por alguns autores.
Resumo:
Uma análise utilizando a série de Taylor é apresentada para se estimar a priori os erros envolvidos na solução numérica da equação de advecção unidimensional com termo fonte, através do Método dos Volumes Finitos em uma malha do tipo uniforme e uma malha não uniforme. Também faz-se um estudo a posteriori para verificar a magnitude do erro de discretização e corroborar os resultados obtidos através da análise a priori. Por meio da técnica de solução manufaturada tem-se uma solução analítica para o problema, a qual facilita a análise dos resultados numéricos encontrados, e estuda-se ainda a influência das funções de interpolação UDS e CDS e do parâmetro u na solução numérica.
Resumo:
O presente estudo objetiva analisar as características das diferenças de expectativas entre o público geral e os auditores independentes, no que diz respeito às demonstrações contábeis. Para isso, incorreu-se em uma pesquisa de artigos científicos em que os autores investigam o problema, cada um em determinado país, e as causas de sua ocorrência. Essa análise da literatura permitiu verificar as similaridades e sugestões para reduzir o fenômeno, em cenário globalizado, e compará-las. Os principais achados demonstram que, de maneira geral, os problemas são globalmente relacionados, assim como as sugestões, e que se torna essencial medidas para amenizar o problema. Tanto os auditores independentes quanto os usuários das demonstrações contábeis tem conhecimento da existência dessa diferença de expectativa, sendo uma ameaça para o bom andamento de uma economia capitalista o desconforto dos usuários caso ocorra à manutenção dessa diferença de expectativa. Dessa maneira, uma mudança na estrutura do cenário atual das empresas de auditoria independente torna-se fundamental.
Resumo:
Extensos estudos realizados nas últimas décadas sobre a propagação de ondas ultrassônicas em sólidos levaram ao desenvolvimento de técnicas não destrutivas para a avaliação da segurança e integridade de estruturas e componentes industriais. O interesse na aplicação de técnicas ultrassônicas para medição de tensões aplicadas e residuais decorre da mudança mensurável da velocidade das ondas ultrassônicas na presença de um campo de tensões, fenômeno conhecido como efeito acustoelástico. Uma teoria de acustoelasticidade fornece um meio atrativo e não destrutivo de medir a tensão média ao longo do caminho percorrido pela onda. O estudo da propagação das ondas ultrassônicas em meios homogêneos anisotrópicos sob tensão conduz a um problema não linear de autovalores dado pela equação de Christoffel generalizada. A característica não linear deste problema decorre da interdependência entre as constantes elásticas efetivas do material e as tensões atuantes. A medição experimental de tensões por técnicas ultrassônicas é um problema inverso da acustoelasticidade. Esta dissertação apresenta a implementação de um algoritmo numérico, baseado no método proposto por Degtyar e Rokhlin, para solução do problema inverso da acustoelasticidade em sólidos ortotrópicos sujeitos a um estado plano de tensões. A solução da equação de Christoffel generalizada apresenta dificuldades de natureza numérica e prática. A estabilidade e a precisão do algoritmo desenvolvido, bem como a influência das incertezas na medição experimental das velocidades das ondas ultrassônicas, foram então investigadas. Dados sintéticos para as velocidades das ondas ultrassônicas de incidência oblíqua em uma placa sujeita a um estado plano de tensões foram gerados pela solução direta da equação de Christoffel generalizada para ilustrar a aplicação do algoritmo desenvolvido. O objetivo maior desta dissertação é a disponibilização de uma nova ferramenta de cálculo para suporte às atividades experimentais de medição de tensões por ultrassom no país.
Resumo:
Esta dissertação possui como objetivo oferecer uma contribuição para o estudo dos controles internos no setor público brasileiro, por meio de comparação entre os aspectos do sistema de controle interno de um órgão público com os conceitos disseminados pelo COSO e literatura correlata. O senso comum, apoiado em inúmeras denúncias veiculadas na mídia sobre superfaturamentos e fraudes ocorridas na Administração Pública, remete à ideia de que os órgãos desse setor não possuem mecanismos suficientes que visem evitar esses desvios de recurso do Erário. A pesquisa foi conduzida por meio de um estudo de caso, tendo como unidade de análise o processo de pagamento de pessoal de uma Organização Militar da Marinha. Para tanto, foi elaborado um instrumento de avaliação do controle interno, baseado no modelo COSO-I adequado à realidade da entidade estudada, para em seguida, com o apoio dessa ferramenta, verificar o nível de harmonização do sistema de controle interno da organização com a estrutura teórica, evidenciando as similaridades e diferenças entre eles. Os resultados apontam para um nível de harmonização de 76,58%. Das diferenças encontradas, 71% das diferenças podem ser explicadas por fatores externos à organização e 29% podem ser explicados pelo modelo interno de gestão, podendo ser convertidos em proximidades com ações executadas na própria organização.
Resumo:
Este trabalho apresenta uma modelagem matemática para o processo de aquecimento de um corpo exposto a uma fonte pontual de radiação térmica. O resultado original que permite a solução exata de uma equação diferencial parcial não linear a partir de uma seqüência de problemas lineares também é apresentado. Gráficos gerados com resultados obtidos pelo método de diferenças finitas ilustram a solução do problema proposto.
Resumo:
Nesta dissertação, são apresentados os seguintes modelos matemáticos de transporte de nêutrons: a equação linearizada de Boltzmann e a equação da difusão de nêutrons monoenergéticos em meios não-multiplicativos. Com o objetivo de determinar o período fluxo escalar de nêutrons, é descrito um método espectronodal que gera soluções numéricas para o problema de difusão em geometria planar de fonte fixa, que são livres de erros de truncamento espacial, e que conjugado com uma técnica de reconstrução espacial intranodal gera o perfil detalhado da solução. A fim de obter o valor aproximado do fluxo angular de nêutrons em um determinado ponto do domínio e em uma determinada direção de migração, descreve-se também um método de reconstrução angular baseado na solução analítica da equação unidimensional de transporte de nêutrons monoenergéticos com espalhamento linearmente anisotrópico com aproximação sintética de difusão nos termos de fonte por espalhamento. O código computacional desenvolvido nesta dissertação foi implementado na plataforma livre Scilab, e para ilustrar a eficiência do código criado,resultados numéricos obtidos para três problemas-modelos são apresentados
Resumo:
Este trabalho estima, utilizando dados trimestrais de 1999 a 2011, o impacto dinâmico de um estímulo fiscal no Brasil sobre as principais variáveis macroeconômicas Brasileiras. Na estimativa dos impactos permitiu-se que as expectativas dos agentes econômicas fossem afetadas pela existência e probabilidade de alternância de regimes (foram detectados dois regimes) na política monetária do país. Os parâmetros da regra da política monetária, nos dois regimes detectados, foram estimados através de um modelo - composto apenas pela equação da regra da política monetária - que permite uma mudança de regime Markoviana. Os parâmetros do único regime encontrado para a política fiscal foram estimados por um modelo Vetorial de Correção de Erros (Vector Error Correction Model - VEC), composto apenas pelas variáveis pertencentes à regra da política fiscal. Os parâmetros estimados, para os diversos regimes das políticas monetária e fiscal, foram utilizados como auxiliares na calibragem de um modelo de equilíbrio geral estocástico dinâmico (MEGED), com mudanças de regime, com rigidez nominal de preços e concorrência monopolística (como em Davig e Leeper (2011)). Após a calibragem do MEGED os impactos dinâmicos de um estímulo fiscal foram obtidos através de uma rotina numérica (desenvolvida por Davig e Leeper (2006)) que permite obter o equilíbrio dinâmico do modelo resolvendo um sistema de equações de diferenças de primeira ordem expectacionais dinâmicas não lineares. Obtivemos que a política fiscal foi passiva durante todo o período analisado e que a política monetária foi sempre ativa, porém sendo em determinados momentos menos ativa. Em geral, em ambas as combinações de regimes, um choque não antecipado dos gastos do governo leva ao aumento do hiato do produto, aumento dos juros reais, redução do consumo privado e (em contradição com o resultado convencional) redução da taxa de inflação.
Resumo:
Este trabalho que envolve matemática aplicada e processamento paralelo: seu objetivo é avaliar uma estratégia de implementação em paralelo para algoritmos de diferenças finitas que aproximam a solução de equações diferenciais de evolução. A alternativa proposta é a substituição dos produtos matriz-vetor efetuados sequencialmente por multiplicações matriz-matriz aceleradas pelo método de Strassen em paralelo. O trabalho desenvolve testes visando verificar o ganho computacional relacionado a essa estratégia de paralelização, pois as aplicacações computacionais, que empregam a estratégia sequencial, possuem como característica o longo período de computação causado pelo grande volume de cálculo. Inclusive como alternativa, nós usamos o algoritmo em paralelo convencional para solução de algoritmos explícitos para solução de equações diferenciais parciais evolutivas no tempo. Portanto, de acordo com os resultados obtidos, nós observamos as características de cada estratégia em paralelo, tendo como principal objetivo diminuir o esforço computacional despendido.
Resumo:
Uma dedução dos critérios de multicriticalidade para o cálculo de pontos críticos de qualquer ordem representa a formalização de ideias utilizadas para calcular pontos críticos e tricríticos e ainda amplia tais ideias. De posse desta dedução pode-se compreender os critérios de tricriticalidade e, com isso, através de uma abordagem via problema de otimização global pode-se fazer o cálculo de pontos tricríticos utilizando um método numérico adequado de otimização global. Para evitar um excesso de custo computacional com rotinas numéricas utilizou-se aproximações na forma de diferenças finitas dos termos que compõem a função objetivo. Para simular a relação P v - T optou-se pela equação de estado cúbica de Peng-Robinson e pela regra clássica de fluidos de van der Vaals, para modelagem do problema também se calculou os tensores de ordem 2, 3, 4 e 5 da função do teste de estabilidade. Os resultados obtidos foram comparados com dados experimentais e por resultados obtidos com outros autores que utilizaram métodos numéricos, equação de estado ou abordagem diferente das utilizadas neste trabalho.
Resumo:
Um grande desafio da atualidade é a preservação dos recursos hídricos, bem como o correto manejo dos mesmos, frente à expansão das cidades e às atividades humanas. A qualidade de um corpo hídrico é usualmente avaliada através da análise de parâmetros biológicos, físicos e químicos. O comportamento de tais parâmetros pode convenientemente ser simulado através de modelos matemáticos e computacionais, que surgem assim como uma ferramenta bastante útil, por sua capacidade de geração de cenários que possam embasar, por exemplo, tomadas de decisão. Nesta tese são discutidas técnicas de estimação da localização e intensidade de uma fonte de contaminante conservativo, hipoteticamente lançado na região predominantemente fluvial de um estuário. O lançamento aqui considerado se dá de forma pontual e contínua e a região enfocada compreendeu o estuário do Rio Macaé, localizado na costa norte do Rio de Janeiro. O trabalho compreende a solução de um problema direto, que consiste no transporte bidimensional (integrado na vertical) desse contaminante hipotético, bem como a aplicação de técnicas de problemas inversos. Para a solução do transporte do contaminante, aqui modelada pela versão 2D horizontal da equação de advecção-difusão, foram utilizados como métodos de discretização o Método de Elementos Finitos e o Método de Diferenças Finitas. Para o problema hidrodinâmico foram utilizados dados de uma solução já desenvolvida para estuário do Rio Macaé. Analisada a malha de acordo com o método de discretização, foram definidas a geometria do estuário e os parâmetros hidrodinâmicos e de transporte. Para a estimação dos parâmetros propostos foi utilizada a técnica de problemas inversos, com o uso dos métodos Luus-Jaakola, Algoritmo de Colisão de Partículas e Otimização por Colônia de Formigas para a estimação da localização e do método Seção Áurea para a estimação do parâmetro de intensidade da fonte. Para a definição de uma fonte, com o objetivo de propor um cenário experimental idealizado e de coleta de dados de amostragem, foi realizada a análise de sensibilidade quanto aos parâmetros a serem estimados. Como os dados de amostragem de concentração foram sintéticos, o problema inverso foi resolvido utilizando-os com e sem ruído, esse introduzido de forma artificial e aleatória. Sem o uso de ruído, os três métodos mostraram-se igualmente eficientes, com uma estimação precisa em 95% das execuções. Já com o uso de dados de amostragem com ruídos de 5%, o método Luus-Jaakola mostrou-se mais eficiente em esforço e custo computacional, embora todos tenham estimado precisamente a fonte em 80% das execuções. Considerando os resultados alcançados neste trabalho tem-se que é possível estimar uma fonte de constituintes, quanto à sua localização e intensidade, através da técnica de problemas inversos. Além disso, os métodos aplicados mostraram-se eficientes na estimação de tais parâmetros, com estimações precisas para a maioria de suas execuções. Sendo assim, o estudo do comportamento de contaminantes, e principalmente da identificação de fontes externas, torna-se uma importante ferramenta para a gestão dos recursos hídricos, possibilitando, inclusive, a identificação de possíveis responsáveis por passivos ambientais.