7 resultados para flow-mediated dilation
em National Center for Biotechnology Information - NCBI
Resumo:
Alpha herpesviruses infect the vertebrate nervous system resulting in either mild recurrent lesions in mucosal epithelia or fatal encephalitis. Movement of virions within the nervous system is a critical factor in the outcome of infection; however, the dynamics of individual virion transport have never been assessed. Here we visualized and tracked individual viral capsids as they moved in axons away from infected neuronal cell bodies in culture. The observed movement was compatible with fast axonal flow mediated by multiple microtubule motors. Capsids accumulated at axon terminals, suggesting that spread from infected neurons required cell contact.
Resumo:
Atherosclerosis preferentially occurs in areas of turbulent flow and low fluid shear stress, whereas laminar flow and high shear stress are atheroprotective. Inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and IL-1 stimulate expression of endothelial cell (EC) genes that may promote atherosclerosis. TNF-α and IL-1 regulate gene expression in ECs, in part, by stimulating mitogen-activated protein kinases (MAPK), which phosphorylate transcription factors. We hypothesized that steady laminar flow inhibits cytokine-mediated activation of MAPK in EC. To test this hypothesis, we determined the effects of flow (shear stress = 12 dynes/cm2) on TNF-α and IL-1-stimulated activity of three MAPK in human umbilical vein ECs (HUVEC): extracellular signal-regulated kinase (ERK1/2), p38, and c-Jun N-terminal kinase (JNK). Flow alone stimulated ERK1/2 and p38 activity but decreased JNK activity compared with static controls. TNF-α or IL-1 alone activated ERK1/2, p38, and JNK maximally at 15 min in HUVEC. Preexposing HUVEC for 10 min to flow inhibited TNF-α and IL-1 activation of JNK by 46% and 49%, respectively, but had no significant effect on ERK1/2 or p38 activation. Incubation of HUVEC with PD98059, which inhibits flow-mediated ERK1/2 activation, prevented flow from inhibiting cytokine activation of JNK. Phorbol 12-myristate 13-acetate, which strongly activates ERK1/2, also inhibited TNF-α activation of JNK. These findings indicate that fluid shear stress inhibits TNF-α-mediated signaling events in HUVEC via the activation of the ERK1/2 signaling pathway. Inhibition of TNF-α signal transduction represents a mechanism by which steady laminar flow may exert atheroprotective effects on the endothelium.
Resumo:
How do secretory proteins and other cargo targeted to post-Golgi locations traverse the Golgi stack? We report immunoelectron microscopy experiments establishing that a Golgi-restricted SNARE, GOS 28, is present in the same population of COPI vesicles as anterograde cargo marked by vesicular stomatitis virus glycoprotein, but is excluded from the COPI vesicles containing retrograde-targeted cargo (marked by KDEL receptor). We also report that GOS 28 and its partnering t-SNARE heavy chain, syntaxin 5, reside together in every cisterna of the stack. Taken together, these data raise the possibility that the anterograde cargo-laden COPI vesicles, retained locally by means of tethers, are inherently capable of fusing with neighboring cisternae on either side. If so, quanta of exported proteins would transit the stack in GOS 28–COPI vesicles via a bidirectional random walk, entering at the cis face and leaving at the trans face and percolating up and down the stack in between. Percolating vesicles carrying both post-Golgi cargo and Golgi residents up and down the stack would reconcile disparate observations on Golgi transport in cells and in cell-free systems.
Resumo:
TVA, the cellular receptor for subgroup A avian leukosis viruses (ALV-A) can mediate viral entry when expressed as a transmembrane protein or as a glycosylphosphatidylinositol-linked protein on the surfaces of transfected mammalian cells. To determine whether mammalian cells can be rendered susceptible to ALV-A infection by attaching a soluble form of TVA to their plasma membranes, the TVA-epidermal growth factor (EGF) fusion protein was generated. TVA-EGF is comprised of the extracellular domain of TVA linked to the mature form of human EGF. Flow cytometric analysis confirmed that TVA-EGF is a bifunctional reagent capable of binding simultaneously to cell surface EGF receptors and to an ALV-A surface envelope-Ig fusion protein. TVA-EGF prebound to transfected mouse fibroblasts expressing either wild-type or kinase-deficient human EGF receptors, rendered these cells highly susceptible to infection by ALV-A vectors. Viral infection was blocked specifically in the presence of a recombinant human EGF protein, demonstrating that the binding of TVA-EGF to EGF receptors was essential for infectivity. These studies have demonstrated that a soluble TVA-ligand fusion protein can mediate viral infection when attached to specific cell surfaces, suggesting an approach for targeting retroviral infection to specific cell types.
Resumo:
Leukocytes roll along the endothelium of postcapillary venules in response to inflammatory signals. Rolling under the hydrodynamic drag forces of blood flow is mediated by the interaction between selectins and their ligands across the leukocyte and endothelial cell surfaces. Here we present force-spectroscopy experiments on single complexes of P-selectin and P-selectin glycoprotein ligand-1 by atomic force microscopy to determine the intrinsic molecular properties of this dynamic adhesion process. By modeling intermolecular and intramolecular forces as well as the adhesion probability in atomic force microscopy experiments we gain information on rupture forces, elasticity, and kinetics of the P-selectin/P-selectin glycoprotein ligand-1 interaction. The complexes are able to withstand forces up to 165 pN and show a chain-like elasticity with a molecular spring constant of 5.3 pN nm−1 and a persistence length of 0.35 nm. The dissociation constant (off-rate) varies over three orders of magnitude from 0.02 s−1 under zero force up to 15 s−1 under external applied forces. Rupture force and lifetime of the complexes are not constant, but directly depend on the applied force per unit time, which is a product of the intrinsic molecular elasticity and the external pulling velocity. The high strength of binding combined with force-dependent rate constants and high molecular elasticity are tailored to support physiological leukocyte rolling.
Resumo:
Superoxide-mediated clastogenesis is characteristic for various chronic inflammatory diseases with autoimmune reactions and probably plays a role in radiation-induced clastogenesis and in the congenital breakage syndromes. It is consistently prevented by exogenous superoxide dismutase (SOD), but not by heat-inactivated SOD, indicating that the anticlastogenic effect is related to the catalytic function of the enzyme. Increased superoxide production by activated monocytes/macrophages is followed by release of more long-lived metabolites, so-called clastogenic factors, which contain lipid peroxidation products, unusual nucleotides of inosine, and cytokines such as tumor necrosis factor α. Since these components are not only clastogenic, but can stimulate further superoxide production by monocytes and neutrophils, the genotoxic effects are self-sustaining. It is shown here that anticlastogenic effects of exogenous SOD are preserved despite extensive washing of the cells and removal of all extracellular SOD. Using flow cytometry and confocal laser microscopy, rapid adherence of the fluorescently labeled enzyme to the cell surface could be observed with slow uptake into the cell during the following hours. The degree of labeling was concentration and time dependent. It was most important for monocytes, compared with lymphocytes, neutrophils, and fibroblasts. The cytochrome c assay showed significantly diminished O2− production by monocytes, pretreated with SOD and washed thereafter. The preferential and rapid binding of SOD to monocytes may be of importance not only for the superoxide-mediated genotoxic effects, described above, but also from a therapeutic standpoint. It can explain the observation that beneficial effects of injected SOD lasted for weeks and months despite rapid clearance of the enzyme from the blood stream according to pharmacodynamic studies.
Resumo:
Herpes simplex virus thymidine kinase (HSV-tk)/ganciclovir (GCV) viral-directed enzyme prodrug gene therapy causes potent, tumor-selective cytotoxicity in animal models in which HSV-tk gene transduction is limited to a minority of tumor cells. The passage of toxic molecules from HSV-tk+ cells to neighboring HSV-tk- cells during GCV therapy is one mechanism that may account for this "bystander" cytotoxicity. To investigate whether gap junction-mediated intercellular coupling could mediate this bystander effect, we used a flow cytometry assay to quantitate the extent of heterocellular coupling between HSV-tk+ murine fibroblasts and both rodent and human tumor cell lines. Bystander tumor cytotoxicity during GCV treatment in a coculture assay was highly correlated (P < 0.001) with the extent of gap junction-mediated coupling. These findings show that gap junction-mediated intercellular coupling contributes to the in vitro bystander effect during HSV-tk/GCV therapy and that retroviral transduction of tumor cells is not required for bystander cytotoxicity.