6 resultados para adventitious shoot

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sinorhizobium meliloti bacteria produce a signal molecule that enhances root respiration in alfalfa (Medicago sativa L.) and also triggers a compensatory increase in whole-plant net carbon assimilation. Nuclear magnetic resonance, mass spectrometry, and ultraviolet–visible absorption identify the enhancer as lumichrome, a common breakdown product of riboflavin. Treating alfalfa roots with 3 nM lumichrome increased root respiration 21% (P < 0.05) within 48 h. A closely linked increase in net carbon assimilation by the shoot compensated for the enhanced root respiration. For example, applying 5 nM lumichrome to young alfalfa roots increased plant growth by 8% (P < 0.05) after 12 days. Soaking alfalfa seeds in 5 nM lumichrome before germination increased growth by 18% (P < 0.01) over the same period. In both cases, significant growth enhancement (P < 0.05) was evident only in the shoot. S. meliloti requires exogenous CO2 for growth and may benefit directly from the enhanced root respiration that is triggered by lumichrome. Thus Sinorhizobium–alfalfa associations, which ultimately form symbiotic N2-reducing root nodules, may be favored at an early developmental stage by lumichrome, a previously unrecognized mutualistic signal. The rapid degradation of riboflavin to lumichrome under many physiological conditions and the prevalence of riboflavin release by rhizosphere bacteria suggest that events demonstrated here in the S. meliloti–alfalfa association may be widely important across many plant–microbe interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study considered cytokinin distribution in tobacco (Nicotiana tabacum L.) shoot apices in distinct phases of development using immunocytochemistry and quantitative tandem mass spectrometry. In contrast to vegetative apices and flower buds, we detected no free cytokinin bases (zeatin, dihydrozeatin, or isopentenyladenine) in prefloral transition apices. We also observed a 3-fold decrease in the content of cytokinin ribosides (zeatin riboside, dihydrozeatin riboside, and isopentenyladenosine) during this transition phase. The group concluded that organ formation (e.g. leaves and flowers) is characterized by enhanced cytokinin content, in contrast to the very low endogenous cytokinin levels found in prefloral transition apices, which showed no organogenesis. The immunocytochemical analyses revealed a differing intracellular localization of the cytokinin bases. Dihydrozeatin and isopentenyladenine were mainly cytoplasmic and perinuclear, whereas zeatin showed a clear-cut nuclear labeling. To our knowledge, this is the first time that this phenomenon has been reported. Cytokinins do not seem to act as positive effectors in the prefloral transition phase in tobacco shoot apices. Furthermore, the differences in distribution at the cellular level may be indicative of a specific physiological role of zeatin in nuclear processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deepwater rice (Oryza sativa) is adapted to survive conditions of severe flooding over extended periods of time. During such periods adventitious roots develop to provide water, nutrients, and anchorage. In the present study the growth of adventitious roots was induced by treatment with ethylene but not auxin, cytokinin, or gibberellin. Root elongation was enhanced between 8 and 10 h after submergence. The population of cells in the S phase and expression of the S-phase-specific histone H3 gene increased within 4 to 6 h. Within 6 to 8 h the G2-phase population increased. Cell-cycle activation was accompanied by sequential induction of a cdc2-activating kinase homolog, R2, of two cdc2 genes, cdc2Os-1 and cdc2Os-2, and of three cyclin genes, cycA1;3, cycB2;1, and cycB2;2, but only induction of the R2 gene expression preceded the induction of the S phase, possibly contributing to cell-cycle regulation in the G1 phase. Both cdc2 genes were expressed at slightly higher levels during DNA replication. Transcripts of the A-type cyclin accumulated during the S and G2 phases, and transcripts of the B-type cyclins accumulated during the G2 phase. Cyclin expression was induced at all nodes with a similar time course, suggesting that ethylene acts systemically and that root primordia respond to ethylene at an early developmental stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In roots two distinct polar movements of auxin have been reported that may control different developmental and growth events. To test the hypothesis that auxin derived from the shoot and transported toward the root controls lateral root development, the two polarities of auxin transport were uncoupled in Arabidopsis. Local application of the auxin-transport inhibitor naphthylphthalamic acid (NPA) at the root-shoot junction decreased the number and density of lateral roots and reduced the free indoleacetic acid (IAA) levels in the root and [3H]IAA transport into the root. Application of NPA to the basal half of or at several positions along the root only reduced lateral root density in regions that were in contact with NPA or in regions apical to the site of application. Lateral root development was restored by application of IAA apical to NPA application. Lateral root development in Arabidopsis roots was also inhibited by excision of the shoot or dark growth and this inhibition was reversible by IAA. Together, these results are consistent with auxin transport from the shoot into the root controlling lateral root development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the apical shoot as a source of inhibitors preventing fruit growth in the absence of a stimulus (e.g. pollination or application of gibberellic acid) has been investigated in pea (Pisum sativum L.). Plant decapitation stimulated parthenocarpic growth, even in derooted plants, and this effect was counteracted by the application of indole acetic acid (IAA) or abscisic acid (ABA) in agar blocks to the severed stump. The treatment of unpollinated ovaries with gibberellic acid blocked the effect of IAA or ABA applied to the stump. [3H]IAA and [3H]ABA applied to the stump were transported basipetally, and [3H]ABA but not [3H]IAA was also detected in unpollinated ovaries. The concentration of ABA in unpollinated ovaries increased significantly in the absence of a promotive stimulus. The application of IAA to the stump enhanced by 2- to 5-fold the concentration of ABA in the inhibited ovary, whereas the inhibition of IAA transport from the apical shoot by triiodobenzoic acid decreased the ovary content of ABA (to approximately one-half). Triiodobenzoic acid alone, however, was unable to stimulate ovary growth. Thus, in addition to removing IAA transport from the apical shoot, the accumulation of a promotive factor is also necessary to induce parthenocarpic growth in decapitated plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed analysis of transgenic tobaccos containing a series of chimeric parB promoter/beta-glucuronidase (GUS) gene constructs allowed us to define two auxin-responsive elements (AREs) of 48 bp and 95 bp (positions -210 to -163 and -374 to -280) in the parB promoter. The two AREs responded independently to physiological concentrations of auxin. Gel retardation assays revealed binding of nuclear protein(s) to the sequence conserved between ARE I and ARE II. The auxin responsiveness of the parB promoter did not mediate the pathway through the as-1 element and transcription factor ASF-1. AREs I and II were responsive to auxin at physiological concentrations, whereas as-1 responded only to higher concentrations of auxin which may be interpreted as stress, though as-1 had been reported to be a minimal ARE [Liu, X. & Lam, E. (1994) J. Biol. Chem. 269, 668-675]. Histochemical staining of transgenic tobacco that contained a parB promoter/GUS construct demonstrated the expression of GUS activity in the shoot apex as well as in the root tips, suggesting the involvement of parB expression in meristematic activity or differentiation. The drastic change in auxin responsiveness in the transgenic plants between the 6th and 10th day after imbibition of seeds implies the development or the activation of auxin signal transduction systems during plant development.