22 resultados para Periodicity
em National Center for Biotechnology Information - NCBI
Resumo:
Positioned nucleosomes contribute to both the structure and the function of the chromatin fiber and can play a decisive role in controlling gene expression. We have mapped, at high resolution, the translational positions adopted by limiting amounts of core histone octamers reconstituted onto 4.4 kb of DNA comprising the entire chicken adult beta-globin gene, its enhancer, and flanking sequences. The octamer displays extensive variation in its affinity for different positioning sites, the range exhibited being about 2 orders of magnitude greater than that of the initial binding of the octamer. Strong positioning sites are located 5' and 3' of the globin gene and in the second intron but are absent from the coding regions. These sites exhibit a periodicity (approximately 200 bp) similar to the average spacing of nucleosomes on the inactive beta-globin gene in vivo, which could indicate their involvement in packaging the gene into higher-order chromatin structure. Overlapping, alternative octamer positioning sites commonly exhibit spacings of 20 and 40 bp, but not of 10 bp. These short-range periodicities could reflect features of the core particle structure contributing to the pronounced sequence-dependent manner in which the core histone octamer interacts with DNA.
Resumo:
The tendency of a polypeptide chain to form alpha-helical or beta-strand secondary structure depends upon local and nonlocal effects. Local effects reflect the intrinsic propensities of the amino acid residues for particular secondary structures, while nonlocal effects reflect the positioning of the individual residues in the context of the entire amino acid sequence. In particular, the periodicity of polar and nonpolar residues specifies whether a given sequence is consistent with amphiphilic alpha-helices or beta-strands. The importance of intrinsic propensities was compared to that of polar/nonpolar periodicity by a direct competition. Synthetic peptides were designed using residues with intrinsic propensities that favored one or the other type of secondary structure. The polar/nonpolar periodicities of the peptides were designed either to be consistent with the secondary structure favored by the intrinsic propensities of the component residues or in other cases to oppose these intrinsic propensities. Characterization of the synthetic peptides demonstrated that in all cases the observed secondary structure correlates with the periodicity of the peptide sequence--even when this secondary structure differs from that predicted from the intrinsic propensities of the component amino acids. The observed secondary structures are concentration dependent, indicating that oligomerization of the amphiphilic peptides is responsible for the observed secondary structures. Thus, for self-assembling oligomeric peptides, the polar/nonpolar periodicity can overwhelm the intrinsic propensities of the amino acid residues and serves as the major determinant of peptide secondary structure.
Resumo:
Polymers of N-substituted glycines (“peptoids”) containing chiral centers at the α position of their side chains can form stable structures in solution. We studied a prototypical peptoid, consisting of five para-substituted (S)-N-(1-phenylethyl)glycine residues, by NMR spectroscopy. Multiple configurational isomers were observed, but because of extensive signal overlap, only the major isomer containing all cis-amide bonds was examined in detail. The NMR data for this molecule, in conjunction with previous CD spectroscopic results, indicate that the major species in methanol is a right-handed helix with cis-amide bonds. The periodicity of the helix is three residues per turn, with a pitch of ≈6 Å. This conformation is similar to that anticipated by computational studies of a chiral peptoid octamer. The helical repeat orients the amide bond chromophores in a manner consistent with the intensity of the CD signal exhibited by this molecule. Many other chiral polypeptoids have similar CD spectra, suggesting that a whole family of peptoids containing chiral side chains is capable of adopting this secondary structure motif. Taken together, our experimental and theoretical studies of the structural properties of chiral peptoids lay the groundwork for the rational design of more complex polypeptoid molecules, with a variety of applications, ranging from nanostructures to nonviral gene delivery systems.
Resumo:
The M2 protein from influenza A virus forms proton-selective channels that are essential to viral function and are the target of the drug amantadine. Cys scanning was used to generate a series of mutants with successive substitutions in the transmembrane segment of the protein, and the mutants were expressed in Xenopus laevis oocytes. The effect of the mutations on reversal potential, ion currents, and amantadine resistance were measured. Fourier analysis revealed a periodicity consistent with a four-stranded coiled coil or helical bundle. A three-dimensional model of this structure suggests a possible mechanism for the proton selectivity of the M2 channel of influenza virus.
Resumo:
Staphylococcal α-toxin is a 293-residue, single-chain polypeptide that spontaneously assembles into a heptameric pore in target cell membranes. To identify the pore-forming domain, substitution mutants have been produced in which single cysteine residues were introduced throughout the toxin molecule. By attaching the environmentally sensitive dye acrylodan to the sulfhydryl groups, the environment of individual amino acid side chains could be probed. In liposomes, a single 23-amino acid sequence (residues 118–140) was found to move from a polar to a nonpolar environment, indicating that this sequence forms the walls of the pore. However, periodicity in side chain environmental polarity could not be detected in the liposomal system. In the present study, the fluorimetric analyses were extended to physiological target cells. With susceptible cells such as rabbit erythrocytes and human lymphocytes, the 23 central amino acids 118–140 were again found to insert into the membrane; in contrast to the previous study with liposomes, the expected periodicity was now detected. Thus, every other residue in the sequence 126–140 entered a nonpolar environment in a striking display of an amphipathic transmembrane β-barrel. In contrast, human granulocytes were found to bind α-toxin to a similar extent as lymphocytes, but the heptamers forming on these cells failed to insert their pore-forming domain into the membrane. As a consequence, nonfunctional heptamers assembled and the cells remained viable. The data resolve the molecular organization of a pore-forming toxin domain in living cells and reveal that resistant cells can prevent insertion of the functional domain into the bilayer.
Resumo:
Structural models of inward rectifier K+ channels incorporate four identical or homologous subunits, each of which has two hydrophobic segments (M1 and M2) which are predicted to span the membrane as α helices. Since hydrophobic interactions between proteins and membrane lipids are thought to be generally of a nonspecific nature, we attempted to identify lipid-contacting residues in Kir2.1 as those which tolerate mutation to tryptophan, which has a large hydrophobic side chain. Tolerated mutations were defined as those which produced measurable inwardly rectifying currents in Xenopus oocytes. To distinguish between water-accessible positions and positions adjacent to membrane lipids or within the protein interior we also mutated residues in M1 and M2 individually to aspartate, since an amino acid with a charged side chain should not be tolerated at lipid-facing or interior positions, due to the energy cost of burying a charge in a hydrophobic environment. Surprisingly, 17 out of 20 and 17 out of 22 non-tryptophan residues in M1 and M2, respectively, tolerated being mutated to tryptophan. Moreover, aspartate was tolerated at 15 out of 22 and 15 out of 21 non-aspartate M1 and M2 positions respectively. Periodicity in the pattern of tolerated vs. nontolerated mutations consistent with α helices or β strands did not emerge convincingly from these data. We consider the possibility that parts of M1 and M2 may be in contact with water.
Resumo:
We sought to create a comprehensive catalog of yeast genes whose transcript levels vary periodically within the cell cycle. To this end, we used DNA microarrays and samples from yeast cultures synchronized by three independent methods: α factor arrest, elutriation, and arrest of a cdc15 temperature-sensitive mutant. Using periodicity and correlation algorithms, we identified 800 genes that meet an objective minimum criterion for cell cycle regulation. In separate experiments, designed to examine the effects of inducing either the G1 cyclin Cln3p or the B-type cyclin Clb2p, we found that the mRNA levels of more than half of these 800 genes respond to one or both of these cyclins. Furthermore, we analyzed our set of cell cycle–regulated genes for known and new promoter elements and show that several known elements (or variations thereof) contain information predictive of cell cycle regulation. A full description and complete data sets are available at http://cellcycle-www.stanford.edu
Resumo:
The cortex of the brain is organized into clear horizontal layers, laminae, which subserve much of the connectional anatomy of the brain. We hypothesize that there is also a vertical anatomical organization that might subserve local interactions of neuronal functional units, in accord with longstanding electrophysiological observations. We develop and apply a general quantitative method, inspired by analogous methods in condensed matter physics, to examine the anatomical organization of the cortex in human brain. We find, in addition to obvious laminae, anatomical evidence for tightly packed microcolumnar ensembles containing approximately 11 neurons, with a periodicity of about 80 μm. We examine the structural integrity of this new architectural feature in two common dementing illnesses, Alzheimer disease and dementia with Lewy bodies. In Alzheimer disease, there is a dramatic, nearly complete loss of microcolumnar ensemble organization. The relative degree of loss of microcolumnar ensembles is directly proportional to the number of neurofibrillary tangles, but not related to the amount of amyloid-β deposition. In dementia with Lewy bodies, a similar disruption of microcolumnar ensemble architecture occurs despite minimal neuronal loss. These observations show that quantitative analysis of complex cortical architecture can be applied to analyze the anatomical basis of brain disorders.
Resumo:
Telomerase activity is developmentally regulated in mammals. Here we examine telomerase activity in plants, whose development differs in fundamental ways from that of animals. Using a modified version of the telomere repeat amplification protocol (TRAP) assay, we detected an activity in extracts from carrots, cauliflower, soybean, Arabidopsis, and rice with all the characteristics expected for a telomerase synthesizing the plant telomere repeat sequence TTTAGGG. The activity was dependent on RNA and protein components, required dGTP, dATP, and dTTP, but not dCTP, and generated products with a seven nucleotide periodicity. Telomerase activity was abundant in cauliflower meristematic tissue and undifferentiated cells from Arabidopsis, soybean, and carrot suspension cultures, but was low or not detectable in a sampling of differentiated tissues from mature plants. Telomerase from cauliflower meristematic tissues exhibited relaxed DNA sequence requirements, which might reflect the capacity to form telomeres on broken chromosomes in vivo. The dramatic differences in telomerase expression and their correlation with cellular proliferation capacity mirror changes in human telomerase levels during differentiation and immortalization. Hence, telomerase activation appears to be a conserved mechanism involved in conferring long-term proliferation capacity.
Resumo:
The NMR structure of the rat calreticulin P-domain, comprising residues 189–288, CRT(189–288), shows a hairpin fold that involves the entire polypeptide chain, has the two chain ends in close spatial proximity, and does not fold back on itself. This globally extended structure is stabilized by three antiparallel β-sheets, with the β-strands comprising the residues 189–192 and 276–279, 206–209 and 262–265, and 223–226 and 248–251, respectively. The hairpin loop of residues 227–247 and the two connecting regions between the β-sheets contain a hydrophobic cluster, where each of the three clusters includes two highly conserved tryptophyl residues, one from each strand of the hairpin. The three β-sheets and the three hydrophobic clusters form a repeating pattern of interactions across the hairpin that reflects the periodicity of the amino acid sequence, which consists of three 17-residue repeats followed by three 14-residue repeats. Within the global hairpin fold there are two well-ordered subdomains comprising the residues 219–258, and 189–209 and 262–284, respectively. These are separated by a poorly ordered linker region, so that the relative orientation of the two subdomains cannot be precisely described. The structure type observed for CRT(189–288) provides an additional basis for functional studies of the abundant endoplasmic reticulum chaperone calreticulin.
Resumo:
A global approach was used to analyze protein synthesis and stability during the cell cycle of the bacterium Caulobacter crescentus. Approximately one-fourth (979) of the estimated C. crescentus gene products were detected by two-dimensional gel electrophoresis, 144 of which showed differential cell cycle expression patterns. Eighty-one of these proteins were identified by mass spectrometry and were assigned to a wide variety of functional groups. Pattern analysis revealed that coexpression groups were functionally clustered. A total of 48 proteins were rapidly degraded in the course of one cell cycle. More than half of these unstable proteins were also found to be synthesized in a cell cycle-dependent manner, establishing a strong correlation between rapid protein turnover and the periodicity of the bacterial cell cycle. This is, to our knowledge, the first evidence for a global role of proteolysis in bacterial cell cycle control.
Resumo:
Two and a half millennia ago Pythagoras initiated the scientific study of the pitch of sounds; yet our understanding of the mechanisms of pitch perception remains incomplete. Physical models of pitch perception try to explain from elementary principles why certain physical characteristics of the stimulus lead to particular pitch sensations. There are two broad categories of pitch-perception models: place or spectral models consider that pitch is mainly related to the Fourier spectrum of the stimulus, whereas for periodicity or temporal models its characteristics in the time domain are more important. Current models from either class are usually computationally intensive, implementing a series of steps more or less supported by auditory physiology. However, the brain has to analyze and react in real time to an enormous amount of information from the ear and other senses. How is all this information efficiently represented and processed in the nervous system? A proposal of nonlinear and complex systems research is that dynamical attractors may form the basis of neural information processing. Because the auditory system is a complex and highly nonlinear dynamical system, it is natural to suppose that dynamical attractors may carry perceptual and functional meaning. Here we show that this idea, scarcely developed in current pitch models, can be successfully applied to pitch perception.
Resumo:
A statistical modeling approach is proposed for use in searching large microarray data sets for genes that have a transcriptional response to a stimulus. The approach is unrestricted with respect to the timing, magnitude or duration of the response, or the overall abundance of the transcript. The statistical model makes an accommodation for systematic heterogeneity in expression levels. Corresponding data analyses provide gene-specific information, and the approach provides a means for evaluating the statistical significance of such information. To illustrate this strategy we have derived a model to depict the profile expected for a periodically transcribed gene and used it to look for budding yeast transcripts that adhere to this profile. Using objective criteria, this method identifies 81% of the known periodic transcripts and 1,088 genes, which show significant periodicity in at least one of the three data sets analyzed. However, only one-quarter of these genes show significant oscillations in at least two data sets and can be classified as periodic with high confidence. The method provides estimates of the mean activation and deactivation times, induced and basal expression levels, and statistical measures of the precision of these estimates for each periodic transcript.
Resumo:
An approximately decadal periodicity in surface air temperature is discernable in global observations from A.D. 1855 to 1900 and since A.D. 1945, but with a periodicity of only about 6 years during the intervening period. Changes in solar irradiance related to the sunspot cycle have been proposed to account for the former, but cannot account for the latter. To explain both by a single mechanism, we propose that extreme oceanic tides may produce changes in sea surface temperature at repeat periods, which alternate between approximately one-third and one-half of the lunar nodal cycle of 18.6 years. These alternations, recurring at nearly 90-year intervals, reflect varying slight degrees of misalignment and departures from the closest approach of the Earth with the Moon and Sun at times of extreme tide raising forces. Strong forcing, consistent with observed temperature periodicities, occurred at 9-year intervals close to perihelion (solar perigee) for several decades centered on A.D. 1881 and 1974, but at 6-year intervals for several decades centered on A.D. 1923. As a physical explanation for tidal forcing of temperature we propose that the dissipation of extreme tides increases vertical mixing of sea water, thereby causing episodic cooling near the sea surface. If this mechanism correctly explains near-decadal temperature periodicities, it may also apply to variability in temperature and climate on other times-scales, even millennial and longer.
Resumo:
A 135-kD actin-bundling protein was purified from pollen tubes of lily (Lilium longiflorum) using its affinity to F-actin. From a crude extract of the pollen tubes, this protein was coprecipitated with exogenously added F-actin and then dissociated from F-actin by treating it with high-ionic-strength solution. The protein was further purified sequentially by chromatography on a hydroxylapatite column, a gel-filtration column, and a diethylaminoethyl-cellulose ion-exchange column. In the present study, this protein is tentatively referred to as P-135-ABP (Plant 135-kD Actin-Bundling Protein). By the elution position from a gel-filtration column, we estimated the native molecular mass of purified P-135-ABP to be 260 kD, indicating that it existed in a dimeric form under physiological conditions. This protein bound to and bundled F-actin prepared from chicken breast muscle in a Ca2+-independent manner. The binding of 135-P-ABP to actin was saturated at an approximate stoichiometry of 26 actin monomers to 1 dimer of P-135-ABP. By transmission electron microscopy of thin sections, we observed cross-bridges between F-actins with a longitudinal periodicity of 31 nm. Immunofluorescence microscopy using rhodamine-phalloidin and antibodies against the 135-kD polypeptide showed that P-135-ABP was colocalized with bundles of actin filaments in lily pollen tubes, leading us to conclude that it is the factor responsible for bundling the filaments.