11 resultados para Individual bedload transport event

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alpha herpesviruses infect the vertebrate nervous system resulting in either mild recurrent lesions in mucosal epithelia or fatal encephalitis. Movement of virions within the nervous system is a critical factor in the outcome of infection; however, the dynamics of individual virion transport have never been assessed. Here we visualized and tracked individual viral capsids as they moved in axons away from infected neuronal cell bodies in culture. The observed movement was compatible with fast axonal flow mediated by multiple microtubule motors. Capsids accumulated at axon terminals, suggesting that spread from infected neurons required cell contact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a technique, methylation-specific PCR in situ hybridization (MSP-ISH), which allows for the methylation status of specific DNA sequences to be visualized in individual cells. We use MSP-ISH to monitor the timing and consequences of aberrant hypermethylation of the p16 tumor suppresser gene during the progression of cancers of the lung and cervix. Hypermethylation of p16 was localized only to the neoplastic cells in both in situ lesions and invasive cancers, and was associated with loss of p16 protein expression. MSP-ISH allowed us to dissect the surprising finding that p16 hypermethylation occurs in cervical carcinoma. This tumor is associated with infection of the oncogenic human papillomavirus, which expresses a protein, E7, that inactivates the retinoblastoma (Rb) protein. Thus, simultaneous Rb and p16 inactivation would not be needed to abrogate the critical cyclin D–Rb pathway. MSP-ISH reveals that p16 hypermethylation occurs heterogeneously within early cervical tumor cell populations that are separate from those expressing viral E7 transcripts. In advanced cervical cancers, the majority of cells have a hypermethylated p16, lack p16 protein, but no longer express E7. These data suggest that p16 inactivation is selected as the most effective mechanism of blocking the cyclin D–Rb pathway during the evolution of an invasive cancer from precursor lesions. These studies demonstrate that MSP-ISH is a powerful approach for studying the dynamics of aberrant methylation of critical tumor suppressor genes during tumor evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yeast Sec22p participates in both anterograde and retrograde vesicular transport between the endoplasmic reticulum (ER) and the Golgi apparatus by functioning as a v-SNARE (soluble N-ethylmaleimide-sensitive factor [NSF] attachment protein receptor) of transport vesicles. Three mammalian proteins homologous to Sec22p have been identified and are referred to as Sec22a, Sec22b/ERS-24, and Sec22c, respectively. The existence of three homologous proteins in mammalian cells calls for detailed cell biological and functional examinations of each individual protein. The epitope-tagged forms of all three proteins have been shown to be primarily associated with the ER, although functional examination has not been carefully performed for any one of them. In this study, using antibodies specific for Sec22b/ERS-24, it is revealed that endogenous Sec22b/ERS-24 is associated with vesicular structures in both the perinuclear Golgi and peripheral regions. Colabeling experiments for Sec22b/ERS-24 with Golgi mannosidase II, the KDEL receptor, and the envelope glycoprotein G (VSVG) of vesicular stomatitis virus (VSV) en route from the ER to the Golgi under normal, brefeldin A, or nocodazole-treated cells suggest that Sec22b/ERS-24 is enriched in the pre-Golgi intermediate compartment (IC). In a well-established semi-intact cell system that reconstitutes transport from the ER to the Golgi, transport of VSVG is inhibited by antibodies against Sec22b/ERS-24. EGTA is known to inhibit ER–Golgi transport at a stage after vesicle/transport intermediate docking but before the actual fusion event. Antibodies against Sec22b/ERS-24 inhibit ER–Golgi transport only when they are added before the EGTA-sensitive stage. Transport of VSVG accumulated in pre-Golgi IC by incubation at 15°C is also inhibited by Sec22b/ERS-24 antibodies. Morphologically, VSVG is transported from the ER to the Golgi apparatus via vesicular intermediates that scatter in the peripheral as well as the Golgi regions. In the presence of antibodies against Sec22b/ERS-24, VSVG is seen to accumulate in these intermediates, suggesting that Sec22b/ERS-24 functions at the level of the IC in ER–Golgi transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differentiating 3T3-L1 cells exhibit a dramatic increase in the rate of insulin-stimulated glucose transport during their conversion from proliferating fibroblasts to nonproliferating adipocytes. On day 3 of 3T3-L1 cell differentiation, basal glucose transport and cell surface transferrin binding are markedly diminished. This occurs concomitant with the formation of a distinct insulin-responsive vesicular pool of intracellular glucose transporter 1 (GLUT1) and transferrin receptors as assessed by sucrose velocity gradients. The intracellular distribution of the insulin-responsive aminopeptidase is first readily detectable on day 3, and its gradient profile and response to insulin at this time are identical to that of GLUT1. With further time of differentiation, GLUT4 is expressed and targeted to the same insulin-responsive vesicles as the other three proteins. Our data are consistent with the notion that a distinct insulin-sensitive vesicular cargo compartment forms early during fat call differentiation and its formation precedes GLUT4 expression. The development of this compartment may result from the differentiation-dependent inhibition of constitutive GLUT1 and transferrin receptor trafficking such that there is a large increase in, or the new formation of, a population of postendosomal, insulin-responsive vesicles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In polarized HepG2 hepatoma cells, sphingolipids are transported to the apical, bile canalicular membrane by two different transport routes, as revealed with fluorescently tagged sphingolipid analogs. One route involves direct, transcytosis-independent transport of Golgi-derived glucosylceramide and sphingomyelin, whereas the other involves basolateral to apical transcytosis of both sphingolipids. We show that these distinct routes display a different sensitivity toward nocodazole and cytochalasin D, implying a specific transport dependence on either microtubules or actin filaments, respectively. Thus, nocodazole strongly inhibited the direct route, whereas sphingolipid transport by transcytosis was hardly affected. Moreover, nocodazole blocked “hyperpolarization,” i.e., the enlargement of the apical membrane surface, which is induced by treating cells with dibutyryl-cAMP. By contrast, the transcytotic route but not the direct route was inhibited by cytochalasin D. The actin-dependent step during transcytotic lipid transport probably occurs at an early endocytic event at the basolateral plasma membrane, because total lipid uptake and fluid phase endocytosis of horseradish peroxidase from this membrane were inhibited by cytochalasin D as well. In summary, the results show that the two sphingolipid transport pathways to the apical membrane must have a different requirement for cytoskeletal elements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hybrid protein, tPA/GFP, consisting of rat tissue plasminogen activator (tPA) and green fluorescent protein (GFP) was expressed in PC12 cells and used to study the distribution, secretory behavior, and dynamics of secretory granules containing tPA in living cells with a neuronal phenotype. High-resolution images demonstrate that tPA/GFP has a growth cone-biased distribution in differentiated cells and that tPA/GFP is transported in granules of the regulated secretory pathway that colocalize with granules containing secretogranin II. Time-lapse images of secretion reveal that secretagogues induce substantial loss of cellular tPA/GFP fluorescence, most importantly from growth cones. Time-lapse images of the axonal transport of granules containing tPA/GFP reveal a surprising complexity to granule dynamics. Some granules undergo canonical fast axonal transport; others move somewhat more slowly, especially in highly fluorescent neurites. Most strikingly, granules traffic bidirectionally along neurites to an extent that depends on granule accumulation, and individual granules can reverse their direction of motion. The retrograde component of this bidirectional transport may help to maintain cellular homeostasis by transporting excess tPA/GFP back toward the cell body. The results presented here provide a novel view of the axonal transport of secretory granules. In addition, the results suggest that tPA is targeted for regulated secretion from growth cones of differentiated cells, strategically positioning tPA to degrade extracellular barriers or to activate other barrier-degrading proteases during axonal elongation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dendritic mRNA transport and local translation at individual potentiated synapses may represent an elegant way to form synaptic memory. Recently, we characterized Staufen, a double-stranded RNA-binding protein, in rat hippocampal neurons and showed its presence in large RNA-containing granules, which colocalize with microtubules in dendrites. In this paper, we transiently transfect hippocampal neurons with human Staufen-green fluorescent protein (GFP) and find fluorescent granules in the somatodendritic domain of these cells. Human Stau-GFP granules show the same cellular distribution and size and also contain RNA, as already shown for the endogenous Stau particles. In time-lapse videomicroscopy, we show the bidirectional movement of these Staufen-GFP–labeled granules from the cell body into dendrites and vice versa. The average speed of these particles was 6.4 μm/min with a maximum velocity of 24.3 μm/min. Moreover, we demonstrate that the observed assembly into granules and their subsequent dendritic movement is microtubule dependent. Taken together, we have characterized a novel, nonvesicular, microtubule-dependent transport pathway involving RNA-containing granules with Staufen as a core component. This is the first demonstration in living neurons of movement of an essential protein constituent of the mRNA transport machinery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using an event-related functional MRI design, we explored the relative roles of dorsal and ventral prefrontal cortex (PFC) regions during specific components (Encoding, Delay, Response) of a working memory task under different memory-load conditions. In a group analysis, effects of increased memory load were observed only in dorsal PFC in the encoding period. Activity was lateralized to the right hemisphere in the high but not the low memory-load condition. Individual analyses revealed variability in activation patterns across subjects. Regression analyses indicated that one source of variability was subjects’ memory retrieval rate. It was observed that dorsal PFC plays a differentially greater role in information retrieval for slower subjects, possibly because of inefficient retrieval processes or a reduced quality of mnemonic representations. This study supports the idea that dorsal and ventral PFC play different roles in component processes of working memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface reactive phases of soils and aquifers, comprised of phyllosilicate and metal oxohydroxide minerals along with humic substances, play a critical role in the regulation of contaminant fate and transport. Much of our knowledge concerning contaminant-mineral interactions at the molecular level, however, is derived from extensive experimentation on model mineral systems. Although these investigations have provided a foundation for understanding reactive surface functional groups on individual mineral phases, the information cannot be readily extrapolated to complex mineral assemblages in natural systems. Recent studies have elucidated the role of less abundant mineral and organic substrates as important surface chemical modifiers and have demonstrated complex coupling of reactivity between permanent-charge phyllosilicates and variable-charge Fe-oxohydroxide phases. Surface chemical modifiers were observed to control colloid generation and transport processes in surface and subsurface environments as well as the transport of solutes and ionic tracers. The surface charging mechanisms operative in the complex mineral assemblages cannot be predicted based on bulk mineralogy or by considering surface reactivity of less abundant mineral phases based on results from model systems. The fragile nature of mineral assemblages isolated from natural systems requires novel techniques and experimental approaches for investigating their surface chemistry and reactivity free of artifacts. A complete understanding of the surface chemistry of complex mineral assemblages is prerequisite to accurately assessing environmental and human health risks of contaminants or in designing environmentally sound, cost-effective chemical and biological remediation strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil dust is a major constituent of airborne particles in the global atmosphere. Dust plumes frequently cover huge areas of the earth; they are one of the most prominent and commonly visible features in satellite imagery. Dust is believed to play a role in many biogeochemical processes, but the importance of dust in these processes is not well understood because of the dearth of information about the global distribution of dust and its physical, chemical, and mineralogical properties. This paper describes some features of the large-scale distribution of dust and identifies some of the geological characteristics of important source areas. The transport of dust from North Africa is presented as an example of possible long-range dust effects, and the impact of African dust on environmental processes in the western North Atlantic and the southeastern United States is assessed. Dust transported over long distances usually has a mass median diameter <10 μm. Small wind-borne soil particles show signs of extensive weathering; consequently, the physical and chemical properties of the particles will greatly depend on the weathering history in the source region and on the subsequent modifications that occur during transit in the atmosphere (typically a period of a week or more). To fully understand the role of dust in the environment and in human health, mineralogists will have to work closely with scientists in other disciplines to characterize the properties of mineral particles as an ensemble and as individual particles especially with regard to surface characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two mutations have been found in a gene (NRT2) of Arabidopsis thaliana that specifically impair constitutive, high-affinity nitrate uptake. These mutants were selected for resistance to 0.1 mM chlorate in the absence of nitrate. Progency from one of the backcrossed mutants showed no constitutive uptake of nitrate below 0.5 mM at pH 7.0 in liquid culture (that is, within 30 min of initial exposure to nitrate). All other uptake activities measured (high-affinity phosphate and sulfate uptake, inducible high-affinity nitrate uptake, and constitutive low-affinity nitrate uptake) were present or nearly normal in the backcrossed mutant. Electrophysiological analysis of individual root cells showed that the nrt2 mutant showed little response to 0.25 mM of nitrate, whereas NRT2 wild-type cells showed an initial depolarization followed by recovery. At 10 mM of nitrate both the mutant and wild-type cells displayed similar, strong electrical responses. These results indicate that NRT2 is a critical and perhaps necessary gene for constitutive, high-affinity nitrate uptake in Arabidopsis, but not for inducible, high-affinity nor constitutive, low-affinity nitrate uptake. Thus, these systems are genetically distinct.