6 resultados para Frotté, Marie Pierre Louis, comte de.

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pseudomonas exotoxin (PE) is a cytotoxin which, after endocytosis, is delivered to the cytosol where it inactivates protein synthesis. Using diaminobenzidine cytochemistry, we found over 94% of internalized PE in transferrin (Tf) -positive endosomes of lymphocytes. When PE translocation was examined in a cell-free assay using purified endocytic vesicles, more than 40% of endosomal 125I-labeled PE was transported after 2 h at 37°C, whereas a toxin inactivated by point mutation in its translocation domain was not translocated. Sorting of endosomes did not allow cell-free PE translocation, whereas active PE transmembrane transport was observed after > 10 min of endocytosis when PE and fluorescent-Tf were localized by confocal immunofluorescence microscopy within a rab5-positive and rab4- and rab7-negative recycling compartment in the pericentriolar region of the cell. Accordingly, when PE delivery to this structure was inhibited using a 20°C endocytosis temperature, subsequent translocation from purified endosomes was impaired. Translocation was also inhibited when endosomes were obtained from cells labeled with PE in the presence of brefeldin A, which caused fusion of translocation-competent recycling endosomes with translocation-incompetent sorting elements. No PE processing was observed in lymphocyte endosomes, the full-sized toxin was translocated and recovered in an enzymatically active form. ATP hydrolysis was found to directly provide the energy required for PE translocation. Inhibitors of endosome acidification (weak bases, protonophores, or bafilomycin A1) when added to the assay did not significantly affect 125I-labeled PE translocation, demonstrating that this transport is independent of the endosome-cytosol pH gradient. Nevertheless, when 125I-labeled PE endocytosis was performed in the presence of one of these molecules, translocation from endosomes was strongly inhibited, indicating that exposure to acidic pH is a prerequisite for PE membrane traversal. When applied during endocytosis, treatments that protect cells against PE intoxication (low temperatures, inhibitors of endosome acidification, and brefeldin A) impaired 125I-labeled PE translocation from purified endosomes. We conclude that PE translocation from a late receptor recycling compartment is implicated in the lymphocyte intoxication procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Escherichia coli DNA repair enzyme MutY plays an important role in the prevention of DNA mutations by removing misincorporated adenine residues from 7,8-dihydro-8-oxo-2′-deoxyguanosine:2′-deoxyadenosine (OG:A) mispairs. The N-terminal domain of MutY (Stop 225, Met1–Lys225) has a sequence and structure that is characteristic of a superfamily of base excision repair glycosylases; however, MutY and its homologs contain a unique C-terminal domain. Previous studies have shown that the C-terminal domain confers specificity for OG:A substrates over G:A substrates and exhibits homology to the d(OG)TPase MutT, suggesting a role in OG recognition. In order to provide additional information on the importance of the C-terminal domain in damage recognition, we have investigated the kinetic properties of a form lacking this domain (Stop 225) under multiple- and single-turnover conditions. In addition, the interaction of Stop 225 with a series of non-cleavable substrate and product analogs was evaluated using gel retardation assays and footprinting experiments. Under multiple-turnover conditions Stop 225 exhibits biphasic kinetic behavior with both OG:A and G:A substrates, likely due to rate-limiting DNA product release. However, the rate of turnover of Stop 225 was increased 2-fold with OG:A substrates compared to the wild-type enzyme. In contrast, the intrinsic rate for adenine removal by Stop 225 from both G:A and OG:A substrates is significantly reduced (10- to 25-fold) compared to the wild-type. The affinity of Stop 225 for substrate analogs was dramatically reduced, as was the ability to discriminate between substrate analogs paired with OG over G. Interestingly, similar hydroxyl radical and DMS footprinting patterns are observed for Stop 225 and wild-type MutY bound to DNA duplexes containing OG opposite an abasic site mimic or a non-hydrogen bonding A analog, suggesting that similar regions of the DNA are contacted by both enzyme forms. Importantly, Stop 225 has a reduced ability to prevent DNA mutations in vivo. This implies that the reduced adenine glycosylase activity translates to a reduced capacity of Stop 225 to prevent DNA mutations in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sinorhizobium fredii strain USDA191 forms N-fixing nodules on the soybean (Glycine max L. Merr.) cultivars (cvs) McCall and Peking, but S. fredii strain USDA257 nodulates only cv Peking. We wondered whether specificity in this system is conditioned by the release of unique flavonoid signals from one of the cultivars or by differential perception of signals by the strains. We isolated flavonoids and used nodC and nolX, which are nod-box-dependent and -independent nod genes, respectively, to determine how signals activate genes in the microsymbionts. Seeds of cv McCall and cv Peking contain the isoflavones daidzein, genistein, and glycitein, as well as their glucosyl and malonylglucosyl glycosides. Roots exude picomolar concentrations of daidzein, genistein, glycitein, and coumestrol. Amounts are generally higher in cv Peking than in cv McCall, and the presence of rhizobia markedly influences the level of specific signals. Nanomolar concentrations of daidzein, genistein, and coumestrol induce expression of nodC and nolX in strain USDA257, but the relative nolX-inducing activities of these signals differ in strain USDA191. Glycitein and the conjugates are inactive. Strain USDA257 deglycosylates daidzin and genistin into daidzein and genistein, respectively, thereby converting inactive precursors into active inducers. Although neither soybean cultivar contains unique nod-gene-inducing flavonoids, strain- and cultivar-specific interactions are characterized by distinct patterns of signal release and response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated cell proliferation modulated by cholecystokinin (CCK) and somatostatin analogue RC-160 in CHO cells bearing endogenous CCKA receptors and stably transfected by human subtype sst5 somatostatin receptor. CCK stimulated cell proliferation of CHO cells. This effect was suppressed by inhibitor of the soluble guanylate cyclase, LY 83583, the inhibitor of the cGMP dependent kinases, KT 5823, and the inhibitor of mitogen-activated protein (MAP) kinase kinase, PD 98059. CCK treatment induced an increase of intracellular cGMP concentrations, but concomitant addition of LY 83583 virtually suppressed this increase. CCK also activated both phosphorylation and activity of p42-MAP kinase; these effects were inhibited by KT 5823. All the effects of CCK depended on a pertussis toxin-dependent G protein. Somatostatin analogue RC-160 inhibited CCK-induced stimulation of cell proliferation but it did not potentiate the suppressive effect of the inhibitors LY 83583 and KT 5823. RC-160 inhibited both CCK-induced intracellular cGMP formation as well as activation of p42-MAP kinase phosphorylation and activity. This inhibitory effect was observed at doses of RC-160 similar to those necessary to occupy the sst5 recombinant receptor and to inhibit CCK-induced cell proliferation. We conclude that, in CHO cells, the proliferation and the MAP kinase signaling cascade depend on a cGMP-dependent pathway. These effects are positively regulated by CCK and negatively influenced by RC-160, interacting through CCKA and sst5 receptors, respectively. These studies provide a characterization of the antiproliferative signal mediated by sst5 receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The speed of absorption of dietary amino acids by the gut varies according to the type of ingested dietary protein. This could affect postprandial protein synthesis, breakdown, and deposition. To test this hypothesis, two intrinsically 13C-leucine-labeled milk proteins, casein (CAS) and whey protein (WP), of different physicochemical properties were ingested as one single meal by healthy adults. Postprandial whole body leucine kinetics were assessed by using a dual tracer methodology. WP induced a dramatic but short increase of plasma amino acids. CAS induced a prolonged plateau of moderate hyperaminoacidemia, probably because of a slow gastric emptying. Whole body protein breakdown was inhibited by 34% after CAS ingestion but not after WP ingestion. Postprandial protein synthesis was stimulated by 68% with the WP meal and to a lesser extent (+31%) with the CAS meal. Postprandial whole body leucine oxidation over 7 h was lower with CAS (272 ± 91 μmol⋅kg−1) than with WP (373 ± 56 μmol⋅kg−1). Leucine intake was identical in both meals (380 μmol⋅kg−1). Therefore, net leucine balance over the 7 h after the meal was more positive with CAS than with WP (P < 0.05, WP vs. CAS). In conclusion, the speed of protein digestion and amino acid absorption from the gut has a major effect on whole body protein anabolism after one single meal. By analogy with carbohydrate metabolism, slow and fast proteins modulate the postprandial metabolic response, a concept to be applied to wasting situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reactivation of telomerase activity in most cancer cells supports the concept that telomerase is a relevant target in oncology, and telomerase inhibitors have been proposed as new potential anticancer agents. The telomeric G-rich single-stranded DNA can adopt in vitro an intramolecular quadruplex structure, which has been shown to inhibit telomerase activity. We used a fluorescence assay to identify molecules that stabilize G-quadruplexes. Intramolecular folding of an oligonucleotide with four repeats of the human telomeric sequence into a G-quadruplex structure led to fluorescence excitation energy transfer between a donor (fluorescein) and an acceptor (tetramethylrhodamine) covalently attached to the 5′ and 3′ ends of the oligonucleotide, respectively. The melting of the G-quadruplex was monitored in the presence of putative G-quadruplex-binding molecules by measuring the fluorescence emission of the donor. A series of compounds (pentacyclic crescent-shaped dibenzophenanthroline derivatives) was shown to increase the melting temperature of the G-quadruplex by 2–20°C at 1 μM dye concentration. This increase in Tm value was well correlated with an increase in the efficiency of telomerase inhibition in vitro. The best telomerase inhibitor showed an IC50 value of 28 nM in a standard telomerase repeat amplification protocol assay. Fluorescence energy transfer can thus be used to reveal the formation of four-stranded DNA structures, and its stabilization by quadruplex-binding agents, in an effort to discover new potent telomerase inhibitors.