2 resultados para Equality of resources
em National Center for Biotechnology Information - NCBI
Resumo:
Previous analysis of the rules regarding how much more a female should invest in a litter of size C rather than producing a litter with one more offspring revealed an invariance relationship between litter size and the range of resources per offspring in any litter size. The rule is that the range of resources per offspring should be inversely proportional to litter size. Here we present a modification of this rule that relates litter size to the total resources devoted to reproduction at that litter size. The result is that the range of resources devoted to reproduction should be the same for all litter sizes. When parental phenotypes covary linearly with resources devoted to reproduction, then those traits should also show equal ranges within each litter size category (except for litters of one). We tested this prediction by examining the range in body size (=total length) of female mosquito fish (Gambusia hubbsi) at different litter sizes. Because resources devoted to reproduction may take many forms (e.g., nest defense), this prediction may have broad applicability.
Resumo:
The class Bdelloidea of the phylum Rotifera is the largest well studied eukaryotic taxon in which males and meiosis are unknown, and the only one for which these indications of ancient asexuality are supported by cytological and molecular genetic evidence. We estimated the rates of synonymous and nonsynonymous substitutions in the hsp82 heat shock gene in bdelloids and in facultatively sexual rotifers of the class Monogononta, employing distance based and maximum likelihood methods. Relative-rate tests, using acanthocephalan rotifers as an outgroup, showed slightly higher rates of nonsynonymous substitution and slightly lower rates of synonymous substitution in bdelloids as compared with monogononts. The opposite trend, however, was seen in intraclass pairwise comparisons. If, as it seems, bdelloids have evolved asexually, an equality of bdelloid and monogonont substitution rates would suggest that the maintenance of sexual reproduction in monogononts is not attributable to an effect of sexual reproduction in limiting the load of deleterious nucleotide substitutions.