2 resultados para DYNAMICAL THEORY

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most large dynamical systems are thought to have ergodic dynamics, whereas small systems may not have free interchange of energy between degrees of freedom. This assumption is made in many areas of chemistry and physics, ranging from nuclei to reacting molecules and on to quantum dots. We examine the transition to facile vibrational energy flow in a large set of organic molecules as molecular size is increased. Both analytical and computational results based on local random matrix models describe the transition to unrestricted vibrational energy flow in these molecules. In particular, the models connect the number of states participating in intramolecular energy flow to simple molecular properties such as the molecular size and the distribution of vibrational frequencies. The transition itself is governed by a local anharmonic coupling strength and a local state density. The theoretical results for the transition characteristics compare well with those implied by experimental measurements using IR fluorescence spectroscopy of dilution factors reported by Stewart and McDonald [Stewart, G. M. & McDonald, J. D. (1983) J. Chem. Phys. 78, 3907–3915].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How a reacting system climbs through a transition state during the course of a reaction has been an intriguing subject for decades. Here we present and quantify a technique to identify and characterize local invariances about the transition state of an N-particle Hamiltonian system, using Lie canonical perturbation theory combined with microcanonical molecular dynamics simulation. We show that at least three distinct energy regimes of dynamical behavior occur in the region of the transition state, distinguished by the extent of their local dynamical invariance and regularity. Isomerization of a six-atom Lennard–Jones cluster illustrates this: up to energies high enough to make the system manifestly chaotic, approximate invariants of motion associated with a reaction coordinate in phase space imply a many-body dividing hypersurface in phase space that is free of recrossings even in a sea of chaos. The method makes it possible to visualize the stable and unstable invariant manifolds leading to and from the transition state, i.e., the reaction path in phase space, and how this regularity turns to chaos with increasing total energy of the system. This, in turn, illuminates a new type of phase space bottleneck in the region of a transition state that emerges as the total energy and mode coupling increase, which keeps a reacting system increasingly trapped in that region.