9 resultados para Cycle of citizen literacy

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In almost all animal species, immature oocytes are arrested naturally in the first meiotic prophase, with a large nucleus called the germinal vesicle. A number of previous studies showed that both activation of maturation/M phase-promoting factor (MPF) (assayed by semiquantitative cytological methods) and some other maturational events occur essentially normally in enucleated oocytes from many amphibian species and mice. Hence, for nearly three decades, it has generally been believed that nuclear material is dispensable for MPF activation and the meiotic cell cycle in vertebrate oocytes. Here, we have challenged this view by examining the histone H1 kinase activities and the molecular forms of MPF in experimentally manipulated Xenopus oocytes. We show that oocytes injected with nuclear material undergo much more rapid MPF activation and maturation than uninjected control oocytes. Conversely, enucleated oocytes, unlike nucleated counterparts, undergo only weak MPF activation in meiosis I and no detectable MPF reactivation in meiosis II, the latter accompanying inhibitory tyrosine phosphorylation of cdc2 kinase, the catalytic subunit of MPF. These results argue strongly that nuclear material is indispensable for the meiotic cell cycle, particularly MPF reactivation (or cdc2 tyrosine dephosphorylation) on entry into meiosis II, in Xenopus oocytes. The classical and general view may thus need reconsideration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the relationship between H2O2 metabolism and the senescence process using soluble fractions, mitochondria, and peroxisomes from senescent pea (Pisum sativum L.) leaves. After 11 d of senescence the activities of Mn-superoxide dismutase, dehydroascorbate reductase (DHAR), and glutathione reductase (GR) present in the matrix, and ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) activities localized in the mitochondrial membrane, were all substantially decreased in mitochondria. The mitochondrial ascorbate and dehydroascorbate pools were reduced, whereas the oxidized glutathione levels were maintained. In senescent leaves the H2O2 content in isolated mitochondria and the NADH- and succinate-dependent production of superoxide (O2·−) radicals by submitochondrial particles increased significantly. However, in peroxisomes from senescent leaves both membrane-bound APX and MDHAR activities were reduced. In the matrix the DHAR activity was enhanced and the GR activity remained unchanged. As a result of senescence, the reduced and the oxidized glutathione pools were considerably increased in peroxisomes. A large increase in the glutathione pool and DHAR activity were also found in soluble fractions of senescent pea leaves, together with a decrease in GR, APX, and MDHAR activities. The differential response to senescence of the mitochondrial and peroxisomal ascorbate-glutathione cycle suggests that mitochondria could be affected by oxidative damage earlier than peroxisomes, which may participate in the cellular oxidative mechanism of leaf senescence longer than mitochondria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of Escherichia coli heat-stable enterotoxin (ST) and uroguanylin were examined on the proliferation of T84 and Caco2 human colon carcinoma cells that express guanylyl cyclase C (GC-C) and SW480 human colon carcinoma cells that do not express this receptor. ST or uroguanylin inhibited proliferation of T84 and Caco2 cells, but not SW480 cells, in a concentration-dependent fashion, assessed by quantifying cell number, cell protein, and [3H]thymidine incorporation into DNA. These agonists did not inhibit proliferation by induction of apoptosis, assessed by TUNEL (terminal deoxynucleotidyl transferase-mediated dNTP-biotin nick end labeling of DNA fragments) assay and DNA laddering, or necrosis, assessed by trypan blue exclusion and lactate dehydrogenase release. Rather, ST prolonged the cell cycle, assessed by flow cytometry and [3H]thymidine incorporation into DNA. The cytostatic effects of GC-C agonists were associated with accumulation of intracellular cGMP, mimicked by the cell-permeant analog 8-Br-cGMP, and reproduced and potentiated by the cGMP-specific phosphodiesterase inhibitor zaprinast but not the inactive ST analog TJU 1-103. Thus, GC-C agonists regulate the proliferation of intestinal cells through cGMP-dependent mechanisms by delaying progression of the cell cycle. These data suggest that endogenous agonists of GC-C, such as uroguanylin, may play a role in regulating the balance between epithelial proliferation and differentiation in normal intestinal physiology. Therefore, GC-C ligands may be novel therapeutic agents for the treatment of patients with colorectal cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retroviruses undergo a high frequency of genetic alterations during the process of copying their RNA genomes. However, little is known about the replication fidelity of other elements that transpose via reverse transcription of an RNA intermediate. The complete sequence of 29 independently integrated copies of the yeast retrotransposon Ty1 (173,043 nt) was determined, and the mutation rate during a single cycle of replication was calculated. The observed base substitution rate of 2.5 x 10(-5) bp per replication cycle suggests that this intracellular element can mutate as rapidly as retroviruses. The pattern and distribution of errors in the Ty1 genome is nonrandom and provides clues to potential in vivo molecular mechanisms of reverse transcriptase-mediated error generation, including heterogeneous RNase H cleavage of Ty1 RNA, addition of terminal nontemplated bases, and transient dislocation and realignment of primer-templates. Overall, analysis of errors generated during Ty1 replication underscores the utility of a genetically tractable model system for the study of reverse transcriptase fidelity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mn K-edge x-ray absorption spectra for the pure S states of the tetranuclear Mn cluster of the oxygen-evolving complex of photosystem II during flash-induced S-state cycling have been determined. The relative S-state populations in samples given 0, 1, 2, 3, 4, or 5 flashes were determined from fitting the flash-induced electron paramagnetic resonance (EPR) multiline signal oscillation pattern to the Kok model. The edge spectra of samples given 0, 1, 2, or 3 flashes were combined with EPR information to calculate the pure S-state edge spectra. The edge positions (defined as the zero-crossing of the second derivatives) are 6550.1, 6551.7, 6553.5, and 6553.8 eV for S0, S1, S2, and S3, respectively. In addition to the shift in edge position, the S0--> S1 and S1--> S2 transitions are accompanied by characteristic changes in the shape of the edge, both indicative of Mn oxidation. The edge position shifts very little (0.3 eV) for the S2--> S3 transition, and the edge shape shows only subtle changes. We conclude that probably no direct Mn oxidation is involved in this transition. The proposed Mn oxidation state assignments are as follows: S0 (II, III, IV, IV) or (III, III, III, IV), S1 (III, III, IV, IV), S2 (III, IV, IV, IV), S3 (III, IV, IV, IV).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

p21Sdi1 (also known as Cip1 and Waf1), an inhibitor of DNA synthesis cloned from senescent human fibroblasts, is an inhibitor of G1 cyclin-dependent kinases (Cdks) in vitro and is transcriptionally regulated by wild-type p53. In addition, p21Sdi1 has been found to inhibit DNA replication by direct interaction with proliferating cell nuclear antigen. In this study we analyzed normal human fibroblast cells arrested in G0 and determined that an excess of p21Sdi1 was present after immunodepletion of various cyclins and Cdks, in contrast to mitogen-stimulated cells in early S phase. Expression of antisense p21Sdi1 RNA in G0-arrested cells resulted in induction of DNA synthesis as well as entry into mitosis. These results suggest that p21Sdi1 functions in G0 and early G1 and that decreased expression of the gene is necessary for cell cycle progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ATP-binding cassette (ABC) transporters bind and hydrolyze ATP. In the cystic fibrosis transmembrane conductance regulator Cl− channel, this interaction with ATP generates a gating cycle between a closed (C) and two open (O1 and O2) conformations. To understand better how ATP controls channel activity, we examined gating transitions from the C to the O1 and O2 states and from these open states to the C conformation. We made three main observations. First, we found that the channel can open into either the O1 or O2 state, that the frequency of transitions to both states was increased by ATP concentration, and that ATP increased the relative proportion of openings into O1 vs. O2. These results indicate that ATP can interact with the closed state to open the channel in at least two ways, which may involve binding to nucleotide-binding domains (NBDs) NBD1 and NBD2. Second, ATP prolonged the burst duration and altered the way in which the channel closed. These data suggest that ATP also interacts with the open channel. Third, the channel showed runs of specific types of open–closed transitions. This finding suggests a mechanism with more than one cycle of gating transitions. These data suggest models to explain how ATP influences conformational transitions in cystic fibrosis transmembrane conductance regulator and perhaps other ABC transporters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A global approach was used to analyze protein synthesis and stability during the cell cycle of the bacterium Caulobacter crescentus. Approximately one-fourth (979) of the estimated C. crescentus gene products were detected by two-dimensional gel electrophoresis, 144 of which showed differential cell cycle expression patterns. Eighty-one of these proteins were identified by mass spectrometry and were assigned to a wide variety of functional groups. Pattern analysis revealed that coexpression groups were functionally clustered. A total of 48 proteins were rapidly degraded in the course of one cell cycle. More than half of these unstable proteins were also found to be synthesized in a cell cycle-dependent manner, establishing a strong correlation between rapid protein turnover and the periodicity of the bacterial cell cycle. This is, to our knowledge, the first evidence for a global role of proteolysis in bacterial cell cycle control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many genes involved in cell division and DNA replication and their protein products have been identified in bacteria; however, little is known about the cell cycle regulation of the intracellular concentration of these proteins. It has been shown that the level of the tubulin-like GTPase FtsZ is critical for the initiation of cell division in bacteria. We show that the concentration of FtsZ varies dramatically during the cell cycle of Caulobacter crescentus. Caulobacter produce two different cell types at each cell division: (i) a sessile stalked cell that can initiate DNA replication immediately after cell division and (ii) a motile swarmer cell in which DNA replication is blocked. After cell division, only the stalked cell contains FtsZ. FtsZ is synthesized slightly before the swarmer cells differentiate into stalked cells and the intracellular concentration of FtsZ is maximal at the beginning of cell division. Late in the cell cycle, after the completion of chromosome replication, the level of FtsZ decreases dramatically. This decrease is probably mostly due to the degradation of FtsZ in the swarmer compartment of the predivisional cell. Thus, the variation of FtsZ concentration parallels the pattern of DNA synthesis. Constitutive expression of FtsZ leads to defects in stalk biosynthesis suggesting a role for FtsZ in this developmental process in addition to its role in cell division.