159 resultados para SYMPATHETIC PREGANGLIONIC NEURONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alpha herpesviruses infect the vertebrate nervous system resulting in either mild recurrent lesions in mucosal epithelia or fatal encephalitis. Movement of virions within the nervous system is a critical factor in the outcome of infection; however, the dynamics of individual virion transport have never been assessed. Here we visualized and tracked individual viral capsids as they moved in axons away from infected neuronal cell bodies in culture. The observed movement was compatible with fast axonal flow mediated by multiple microtubule motors. Capsids accumulated at axon terminals, suggesting that spread from infected neurons required cell contact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-frequency thalamocortical oscillations that underlie drowsiness and slow-wave sleep depend on rhythmic inhibition of relay cells by neurons in the reticular nucleus (RTN) under the influence of corticothalamic fibers that branch to innervate RTN neurons and relay neurons. To generate oscillations, input to RTN predictably should be stronger so disynaptic inhibition of relay cells overcomes direct corticothalamic excitation. Amplitudes of excitatory postsynaptic conductances (EPSCs) evoked in RTN neurons by minimal stimulation of corticothalamic fibers were 2.4 times larger than in relay neurons, and quantal size of RTN EPSCs was 2.6 times greater. GluR4-receptor subunits labeled at corticothalamic synapses on RTN neurons outnumbered those on relay cells by 3.7 times, providing a basis for differences in synaptic strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The floor plate plays a key role in patterning axonal trajectory in the embryonic spinal cord by providing both long-range and local guidance cues that promote or inhibit axonal growth toward and across the ventral midline of the spinal cord, thus acting as an intermediate target for a number of crossing (commissural) and noncrossing (motor) axons. F-spondin, a secreted adhesion molecule expressed in the embryonic floor plate and the caudal somite of birds, plays a dual role in patterning the nervous system. It promotes adhesion and outgrowth of commissural axons and inhibits adhesion of neural crest cells. In the current study, we demonstrate that outgrowth of embryonic motor axons also is inhibited by F-spondin protein in a contact-repulsion fashion. Three independent lines of evidence support our hypothesis: substrate-attached F-spondin inhibits outgrowth of dissociated motor neurons in an outgrowth assay; F-spondin elicits acute growth cone collapse when applied to cultured motor neurons; and challenging ventral spinal cord explants with aggregates of HEK 293 cells expressing F-spondin, causes contact-repulsion of motor neurites. Structural–functional studies demonstrate that the processed carboxyl-half protein that contains the thrombospondin type 1 repeats is more prominent in inhibiting outgrowth, suggesting that the processing of F-spondin is important for enhancing its inhibitory activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alzheimer's disease produces a devastating decline in mental function, with profound effects on learning and memory. Early consequences of the disease include the specific loss of cholinergic neurons in brain, diminished cholinergic signaling, and the accumulation of β-amyloid peptide in neuritic plaques. Of the nicotinic acetylcholine receptors at risk, the most critical may be those containing the α7 gene product (α7-nAChRs), because they are widespread, have a high relative permeability to calcium, and regulate numerous cellular events in the nervous system. With the use of whole-cell patch–clamp recording we show here that nanomolar concentrations of β-amyloid peptides specifically and reversibly block α7-nAChRs on rat hippocampal neurons in culture. The block is noncompetitive, voltage-independent, and use-independent and is mediated through the N-terminal extracellular domain of the receptor. It does not appear to require either calcium influx or G protein activation. β-Amyloid blockade is likely to be a common feature of α7-nAChRs because it applies to the receptors at both somato-dendritic and presynaptic locations on rat hippocampal neurons and extends to homologous receptors on chick ciliary ganglion neurons as well. Because α7-nAChRs in the central nervous system are thought to have numerous functions and recently have been implicated in learning and memory, impaired receptor function in this case may contribute to cognitive deficits associated with Alzheimer's disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In adult rodents, neural progenitor cells in the subependymal (SZ) zone of the lateral cerebral ventricle generate neuroblasts that migrate in chains via the rostral migratory stream (RMS) into the olfactory bulb (OB), where they differentiate into interneurons. However, the existence of this neurogenic migratory system in other mammals has remained unknown. Here, we report the presence of a homologue of the rodent SZ/RMS in the adult macaque monkey, a nonhuman Old World primate with a relatively smaller OB. Our results—obtained by using combined immunohistochemical detection of a marker for DNA replication (5-bromodeoxyuridine) and several cell type-specific markers—indicate that dividing cells in the adult monkey SZ generate neuroblasts that undergo restricted chain migration over an extended distance of more than 2 cm to the OB and differentiate into granule interneurons. These findings in a nonhuman primate extend and support the use of the SZ/RMS as a model system for studying neural regenerative mechanisms in the human brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ATP-gated P2X2 receptors are widely expressed in neurons, but the cellular effects of receptor activation are unclear. We engineered functional green fluorescent protein (GFP)-tagged P2X2 receptors and expressed them in embryonic hippocampal neurons, and report an approach to determining functional and total receptor pool sizes in living cells. ATP application to dendrites caused receptor redistribution and the formation of varicose hot spots of higher P2X2-GFP receptor density. Redistribution in dendrites was accompanied by an activation-dependent enhancement of the ATP-evoked current. Substate-specific mutant T18A P2X2-GFP receptors showed no redistribution or activation-dependent enhancement of the ATP-evoked current. Thus fluorescent P2X2-GFP receptors function normally, can be quantified, and reveal the dynamics of P2X2 receptor distribution on the seconds time scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-type voltage-dependent Ca2+ channels (VDCCs), predominantly localized in the nervous system, have been considered to play an essential role in a variety of neuronal functions, including neurotransmitter release at sympathetic nerve terminals. As a direct approach to elucidating the physiological significance of N-type VDCCs, we have generated mice genetically deficient in the α1B subunit (Cav 2.2). The α1B-deficient null mice, surprisingly, have a normal life span and are free from apparent behavioral defects. A complete and selective elimination of N-type currents, sensitive to ω-conotoxin GVIA, was observed without significant changes in the activity of other VDCC types in neuronal preparations of mutant mice. The baroreflex response, mediated by the sympathetic nervous system, was markedly reduced after bilateral carotid occlusion. In isolated left atria prepared from N-type-deficient mice, the positive inotropic responses to electrical sympathetic neuronal stimulation were dramatically decreased compared with those of normal mice. In contrast, parasympathetic nervous activity in the mutant mice was nearly identical to that of wild-type mice. Interestingly, the mutant mice showed sustained elevation of heart rate and blood pressure. These results provide direct evidence that N-type VDCCs are indispensable for the function of the sympathetic nervous system in circulatory regulation and indicate that N-type VDCC-deficient mice will be a useful model for studying disorders attributable to sympathetic nerve dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To visualize and isolate live dopamine (DA)-producing neurons in the embryonic ventral mesencephalon, we generated transgenic mice expressing green fluorescent protein (GFP) under the control of the rat tyrosine hydroxylase gene promoter. In the transgenic mice, GFP expression was observed in the developing DA neurons containing tyrosine hydroxylase. The outgrowth and cue-dependent guidance of GFP-labeled axons was monitored in vitro with brain culture systems. To isolate DA neurons expressing GFP from brain tissue, cells with GFP fluorescence were sorted by fluorescence-activated cell sorting. More than 60% of the sorted GFP+ cells were positive for tyrosine hydroxylase, confirming that the population had been successfully enriched with DA neurons. The sorted GFP+ cells were transplanted into a rat model of Parkinson's disease. Some of these cells survived and innervated the host striatum, resulting in a recovery from Parkinsonian behavioral defects. This strategy for isolating an enriched population of DA neurons should be useful for cellular and molecular studies of these neurons and for clinical applications in the treatment of Parkinson's disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of distinct classes of potassium channels can dramatically affect the frequency and the pattern of neuronal firing. In a subpopulation of vagal afferent neurons (nodose ganglion neurons), the pattern of impulse activity is effectively modulated by a Ca2+-dependent K+ current. This current produces a post-spike hyperpolarization (AHPslow) that plays a critical role in the regulation of membrane excitability and is responsible for spike-frequency accommodation in these neurons. Inhibition of the AHPslow by a number of endogenous autacoids (e.g., histamine, serotonin, prostanoids, and bradykinin) results in an increase in the firing frequency of vagal afferent neurons from <0.1 to >10 Hz. After a single action potential, the AHPslow in nodose neurons displays a slow rise time to peak (0.3–0.5 s) and a long duration (3–15 s). The slow kinetics of the AHPslow are due, in part, to Ca2+ discharge from an intracellular Ca2+-induced Ca2+ release (CICR) pool. Action potential-evoked Ca2+ influx via either L or N type Ca2+ channels triggers CICR. Surprisingly, although L type channels generate 60% of action potential-induced CICR, only Ca2+ influx through N type Ca2+ channels can trigger the CICR-dependent AHPslow. These observations suggest that a close physical proximity exists between endoplasmic reticulum ryanodine receptors and plasma membrane N type Ca2+ channels and AHPslow potassium channels. Such an anatomical relation might be particularly beneficial for modulation of spike-frequency adaptation in vagal afferent neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control of expression of molecular receptors for chemical messengers and modulation of these receptors’ activity are now established as ways to alter cellular reaction. This paper extends these mechanisms to the arena of pathological pain by presenting the hypothesis that increased expression of α-adrenergic receptors in primary afferent neurons is part of the etiology of pain in classical causalgia. It is argued that partial denervation by lesion of peripheral nerve or by tissue destruction induces a change in peripheral nociceptors, making them excitable by sympathetic activity and adrenergic substances. This excitation is mediated by α-adrenergic receptors and has a time course reminiscent of experimental denervation supersensitivity. The change in neuronal phenotype is demonstrable after lesions of mixed nerves or of the sympathetic postganglionic supply. Similar partial denervations also produce a substantial increase in the number of dorsal root ganglion neurons evidencing the presence of α-adrenergic receptors. The hypothesis proposes the increased presence of α-adrenergic receptors in primary afferent neurons to result from an altered gene expression triggered by cytokines/growth factors produced by disconnection of peripheral nerve fibers from their cell bodies. These additional adrenergic receptors are suggested to make nociceptors and other primary afferent neurons excitable by local or circulating norepinephrine and epinephrine. For central pathways, the adrenergic excitation would be equivalent to that produced by noxious events and would consequently evoke pain. In support, evidence is cited for a form of denervation supersensitivity in causalgia and for increased expression of human α-adrenergic receptors after loss of sympathetic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multielectrode recording techniques were used to record ensemble activity from 10 to 16 simultaneously active CA1 and CA3 neurons in the rat hippocampus during performance of a spatial delayed-nonmatch-to-sample task. Extracted sources of variance were used to assess the nature of two different types of errors that accounted for 30% of total trials. The two types of errors included ensemble “miscodes” of sample phase information and errors associated with delay-dependent corruption or disappearance of sample information at the time of the nonmatch response. Statistical assessment of trial sequences and associated “strength” of hippocampal ensemble codes revealed that miscoded error trials always followed delay-dependent error trials in which encoding was “weak,” indicating that the two types of errors were “linked.” It was determined that the occurrence of weakly encoded, delay-dependent error trials initiated an ensemble encoding “strategy” that increased the chances of being correct on the next trial and avoided the occurrence of further delay-dependent errors. Unexpectedly, the strategy involved “strongly” encoding response position information from the prior (delay-dependent) error trial and carrying it forward to the sample phase of the next trial. This produced a miscode type error on trials in which the “carried over” information obliterated encoding of the sample phase response on the next trial. Application of this strategy, irrespective of outcome, was sufficient to reorient the animal to the proper between trial sequence of response contingencies (nonmatch-to-sample) and boost performance to 73% correct on subsequent trials. The capacity for ensemble analyses of strength of information encoding combined with statistical assessment of trial sequences therefore provided unique insight into the “dynamic” nature of the role hippocampus plays in delay type memory tasks.