123 resultados para Specific heat of liquids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have examined the seed germination in Arabidopsis thaliana of wild type (wt), and phytochrome A (PhyA)- and B (PhyB)-mutants in terms of incubation time and environmental light effects. Seed germination of the wt and PhyA-null mutant (phyA) was photoreversibly regulated by red and far-red lights of 10-1,000 micromol m-2 when incubated in darkness for 1-14 hr, but no germination occurred in PhyB-null mutant (phyB). When wt seeds and the phyB mutant seeds were incubated in darkness for 48 hr, they synthesized PhyA during dark incubation and germinated upon exposure to red light of 1-100 nmol m-2 and far-red light of 0.5-10 micromol m-2, whereas the phyA mutant showed no such response. The results indicate that the seed germination is regulated by PhyA and PhyB but not by other phytochromes, and the effects of PhyA and PhyB are separable in this assay. We determined action spectra separately for PhyA- and PhyB-specific induction of seed germination at Okazaki large spectrograph. Action spectra for the PhyA response show that monochromatic 300-780 nm lights of very low fluence induced the germination, and this induction was not photoreversible in the range examined. Action spectra for the PhyB response show that germination was photoreversibly regulated by alternate irradiations with light of 0.01-1 mmol m-2 at wavelengths of 540-690 nm and 695-780 nm. The present work clearly demonstrated that PhyA photoirreversibly triggers the germination upon irradiations with ultraviolet, visible and far-red light of very low fluence, while PhyB controls the photoreversible effects of low fluence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presynaptic Ca2+ channels are crucial elements in neuronal excitation-secretion coupling. In addition to mediating Ca2+ entry to initiate transmitter release, they are thought to interact directly with proteins of the synaptic vesicle docking/fusion machinery. Here we report isoform-specific, stoichiometric interaction of the BI and rbA isoforms of the alpha1A subunit of P/Q-type Ca2+ channels with the presynaptic membrane proteins syntaxin and SNAP-25 in vitro and in rat brain membranes. The BI isoform binds to both proteins, while only interaction with SNAP-25 can be detected in vitro for the rbA isoform. The synaptic protein interaction ("synprint") site involves two adjacent segments of the intracellular loop connecting domains II and III between amino acid residues 722 and 1036 of the BI sequence. This interaction is competitively blocked by the corresponding region of the N-type Ca2+ channel, indicating that these two channels bind to overlapping regions of syntaxin and SNAP-25. Our results provide a molecular basis for a physical link between Ca2+ influx into nerve terminals and subsequent exocytosis of neurotransmitters at synapses that have presynaptic Ca2+ channels containing alpha1A subunits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In pollen development, a dramatic reorganization of the actin cytoskeleton takes place during the passage of the pollen grain into dormancy and on activation of pollen tube growth. A role for actin-binding proteins is implicated and we report here the identification of a small gene family in maize that encodes actin depolymerizing factor (ADF)-like proteins. The ADF group of proteins are believed to control actin polymerization and depolymerization in response to both intracellular and extracellular signals. Two of the maize genes ZmABP1 and ZmABP2 are expressed specifically in pollen and germinating pollen suggesting that the protein products may be involved in pollen actin reorganization. A third gene, ZmABP3, encodes a protein only 56% and 58% identical to ZmABP1 and ZmABP2, respectively, and its expression is suppressed in pollen and germinated pollen. The fundamental biochemical characteristics of the ZmABP proteins has been elucidated using bacterially expressed ZmABP3 protein. This has the ability to bind monomeric actin (G-actin) and filamentous actin (F-actin). Moreover, it decreases the viscosity of polymerized actin solutions consistent with an ability to depolymerize filaments. These biochemical characteristics, taken together with the sequence comparisons, support the inclusion of the ZmABP proteins in the ADF group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many genes involved in cell division and DNA replication and their protein products have been identified in bacteria; however, little is known about the cell cycle regulation of the intracellular concentration of these proteins. It has been shown that the level of the tubulin-like GTPase FtsZ is critical for the initiation of cell division in bacteria. We show that the concentration of FtsZ varies dramatically during the cell cycle of Caulobacter crescentus. Caulobacter produce two different cell types at each cell division: (i) a sessile stalked cell that can initiate DNA replication immediately after cell division and (ii) a motile swarmer cell in which DNA replication is blocked. After cell division, only the stalked cell contains FtsZ. FtsZ is synthesized slightly before the swarmer cells differentiate into stalked cells and the intracellular concentration of FtsZ is maximal at the beginning of cell division. Late in the cell cycle, after the completion of chromosome replication, the level of FtsZ decreases dramatically. This decrease is probably mostly due to the degradation of FtsZ in the swarmer compartment of the predivisional cell. Thus, the variation of FtsZ concentration parallels the pattern of DNA synthesis. Constitutive expression of FtsZ leads to defects in stalk biosynthesis suggesting a role for FtsZ in this developmental process in addition to its role in cell division.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunization of mice with rat type II collagen (CII), a cartilage-specific protein, leads to development of collagen-induced arthritis (CIA), a model for rheumatoid arthritis. To define the interaction between the immune system and cartilage, we produced two sets of transgenic mice. In the first we point mutated the mouse CII gene to express an earlier defined T-cell epitope, CII-(256-270), present in rat CII. In the second we mutated the mouse type I collagen gene to express the same T-cell epitope. The mice with mutated type I collagen showed no T-cell reactivity to rat CII and were resistant to CIA. Thus, the CII-(256-270) epitope is immunodominant and critical for development of CIA. In contrast, the mice with mutated CII had an intact B-cell response and had T cells which could produce gamma interferon, but not proliferate, in response to CII. They developed CIA, albeit with a reduced incidence. Thus, we conclude that T cells recognize CII derived from endogenous cartilage and are partially tolerized but may still be capable of mediating CIA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A minor groove binder (MGB) derivative (N-3-carbamoyl-1,2-dihydro-3H-pyrrolo[3,2-e]indole-7-carboxylate tripeptide; CDPI3) was covalently linked to the 5' or 3' end of several oligodeoxyribonucleotides (ODNs) totally complementary or possessing a single mismatch to M13mp19 single-stranded DNA. Absorption thermal denaturation and slot-blot hybridization studies showed that conjugation of CDPI3 to these ODNs increased both the specificity and the strength with which they hybridized. Primer extension of the same phage DNA by a modified form of phage T7 DNA polymerase (Sequenase) was physically blocked when a complementary 16-mer with a conjugated 5'-CDPI3 moiety was hybridized to a downstream site. Approximately 50% of the replicating complexes were arrested when the blocking ODN was equimolar to the phage DNA. Inhibition was unaffected by 3'-capping of the ODN with a hexanol group or by elimination of a preannealing step. Blockage was abolished when a single mismatch was introduced into the ODN or when the MGB was either removed or replaced by a 5'-acridine group. A 16-mer with a 3'-CDPI3 moiety failed to arrest primer extension, as did an unmodified 32-mer. We attribute the exceptional stability of hybrids formed by ODNs conjugated to a CDPI3 to the tethered tripeptide binding in the minor groove of the hybrid. When that group is linked to the 5' end of a hybridized ODN, it probably blocks DNA synthesis by inhibiting strand displacement. These ODNs conjugated to CDPI3 offer attractive features as diagnostic probes and antigene agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunohistochemical visualization of the rat vesicular acetylcholine transporter (VAChT) in cholinergic neurons and nerve terminals has been compared to that for choline acetyltransferase (ChAT), heretofore the most specific marker for cholinergic neurons. VAChT-positive cell bodies were visualized in cerebral cortex, basal forebrain, medial habenula, striatum, brain stem, and spinal cord by using a polyclonal anti-VAChT antiserum. VAChT-immuno-reactive fibers and terminals were also visualized in these regions and in hippocampus, at neuromuscular junctions within skeletal muscle, and in sympathetic and parasympathetic autonomic ganglia and target tissues. Cholinergic nerve terminals contain more VAChT than ChAT immunoreactivity after routine fixation, consistent with a concentration of VAChT within terminal neuronal arborizations in which secretory vesicles are clustered. These include VAChT-positive terminals of the median eminence or the hypothalamus, not observed with ChAT antiserum after routine fixation. Subcellular localization of VAChT in specific organelles in neuronal cells was examined by immunoelectron microscopy in a rat neuronal cell line (PC 12-c4) expressing VAChT as well as the endocrine and neuronal forms of the vesicular monoamine transporters (VMAT1 and VMAT2). VAChT is targeted to small synaptic vesicles, while VMAT1 is found mainly but not exclusively on large dense-core vesicles. VMAT2 is found on large dense-core vesicles but not on the small synaptic vesicles that contain VAChT in PC12-c4 cells, despite the presence of VMAT2 immunoreactivity in central and peripheral nerve terminals known to contain monoamines in small synaptic vesicles. Thus, VAChT and VMAT2 may be specific markers for "cholinergic" and "adrenergic" small synaptic vesicles, with the latter not expressed in nonstimulated neuronally differentiated PC12-c4 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Age-associated memory impairment occurs frequently in primates. Based on the established importance of both the perforant path and N-methyl-D-aspartate (NMDA) receptors in memory formation, we investigated the glutamate receptor distribution and immunofluorescence intensity within the dentate gyrus of juvenile, adult, and aged macaque monkeys with the combined use of subunit-specific antibodies and quantitative confocal laser scanning microscopy. Here we demonstrate that aged monkeys, compared to adult monkeys, exhibit a 30.6% decrease in the ratio of NMDA receptor subunit 1 (NMDAR1) immunofluorescence intensity within the distal dendrites of the dentate gyrus granule cells, which receive the perforant path input from the entorhinal cortex, relative to the proximal dendrites, which receive an intrinsic excitatory input from the dentate hilus. The intradendritic alteration in NMDAR1 immunofluorescence occurs without a similar alteration of non-NMDA receptor subunits. Further analyses using synaptophysin as a reflection of total synaptic density and microtubule-associated protein 2 as a dendritic structural marker demonstrated no significant difference in staining intensity or area across the molecular layer in aged animals compared to the younger animals. These findings suggest that, in aged monkeys, a circuit-specific alteration in the intradendritic concentration of NMDAR1 occurs without concomitant gross structural changes in dendritic morphology or a significant change in the total synaptic density across the molecular layer. This alteration in the NMDA receptor-mediated input to the hippocampus from the entorhinal cortex may represent a molecular/cellular substrate for age-associated memory impairments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tyrosine kinases Flt4, Flt1, and Flk1 (or KDR) constitute a family of endothelial cell-specific receptors with seven immunoglobulin-like domains and a split kinase domain. Flt1 and Flk1 have been shown to play key roles in vascular development; these two receptors bind and are activated by vascular endothelial growth factor (VEGF). No ligand has been identified for Flt4, whose expression becomes restricted during development to the lymphatic endothelium. We have identified cDNA clones from a human glioma cell line that encode a secreted protein with 32% amino acid identity to VEGF. This protein, designated VEGF-related protein (VRP), specifically binds to the extracellular domain of Flt4, stimulates the tyrosine phosphorylation of Flt4 expressed in mammalian cells, and promotes the mitogenesis of human lung endothelial cells. VRP fails to bind appreciably to the extracellular domain of Flt1 or Flk1. The protein contains a C-terminal, cysteine-rich region of about 180 amino acids that is not found in VEGF. A 2.4-kb VRP mRNA is found in several human tissues including adult heart, placenta, ovary, and small intestine and in fetal lung and kidney.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Shc adaptor protein contains two phosphotyrosine [Tyr(P)]binding modules--an N-terminal Tyr(P) binding (PTB) domain and a C-terminal Src homology 2 (SH2) domain. We have compared the ability of the Shc PTB domain to bind the receptors for nerve growth factor and insulin, both of which contain juxtamembrane Asn-Pro-Xaa-Tyr(P) motifs implicated in PTB binding. The Shc PTB domain binds with high affinity to a phosphopeptide corresponding to the nerve growth factor receptor Tyr-490 autophosphorylation site. Analysis of individual residues within this motif indicates that the Asn at position -3 [with respect to Tyr(P)], in addition to Tyr(P), is critical for PTB binding, while the Pro at position -2 plays a less significant role. A hydrophobic amino acid 5 residues N-terminal to the Tyr(P) is also essential for high-affinity binding. In contrast, the Shc PTB domain does not bind stably to the Asn-Pro-Xaa-Tyr(P) site at Tyr-960 in the activated insulin receptor, which has a polar residue (Ser) at position -5. Substitution of this Ser at position -5 with Ile markedly increased binding of the insulin receptor Tyr-960 phosphopeptide to the PTB domain. These results suggest that while the Shc PTB domain recognizes a core sequence of Asn-Pro-Xaa-Tyr(P), its binding affinity is modulated by more N-terminal residues in the ligand, which therefore contribute to the specificity of PTB-receptor interactions. An analysis of residues in the Shc PTB domain required for binding to Tyr(P) sites identified a specific and evolutionarily conserved Arg (Arg-175) that is uniquely important for ligand binding and is potentially involved in Tyr(P) recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the effects of retinoic acid (RA) and thyroid hormone (3,3',5-triiodothyronine; T3) on platelet-activating factor receptor (PAFR) gene expression in intact rats and the ability of two human PAFR gene promoters (PAFR promoters 1 and 2) to generate two transcripts (PAFR transcripts 1 and 2). Northern blotting showed that RA and T3 regulated PAFR gene expression only in rat tissues that express PAFR transcript 2. Functional analysis of the human PAFR promoter 2 revealed that responsiveness to RA and T3 was conferred through a 24-bp element [PAFR-hormone response element (HRE) located from -67 to -44 bp of the transcription start site, whereas PAFR promoter 1 did not respond to these hormones. The PAFR-HRE is composed of three direct repeated TGACCT-like hexamer motifs with 2-and 4-bp spaces, and the two upstream and two downstream motifs were identified as response elements for RA and T3. Thus, the PAF-PAFR pathway is regulated by the PAFR level altered by a tissue-specific response to RA and T3 through the PAFR-HRE of the PAFR promoter 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA molecules undergoing transformation into yeast are highly recombinogenic, even when diverged. We reasoned that transformation-associated recombination (TAR) could be employed to clone large DNAs containing repeat sequences, thereby eliminating the need for in vitro enzymatic reactions such as restriction and ligation and reducing the amount of DNA handling. Gently isolated human DNA was transformed directly into yeast spheroplasts along with two genetically marked (M1 and M2) linearized vectors that contained a human Alu sequence at one end and a telomere sequence at the other end (Alu-CEN-M1-TEL and Alu-M2-TEL). Nearly all the M1-selected transformants had yeast artificial chromosomes (YACs) containing human DNA inserts that varied in size from 70 kb to > 600 kb. Approximately half of these had also acquired the unselected M2 marker. The mitotic segregational stability of YACs generated from one (M1) or two (M1 and M2) vector(s) was comparable, suggesting de novo generation of telomeric ends. Since no YACs were isolated when rodent DNAs or a vector lacking an Alu sequence was used, the YACs were most likely the consequence of TAR between the repeat elements on the vector(s) and the human DNA. Using the BLUR13 Alu-containing vector, we demonstrated that human DNA could be efficiently cloned from mouse cells that contained a single human chromosome 16. The distribution of cloned DNAs on chromosome 16 was determined by fluorescence in situ hybridization. We propose that TAR cloning can provide an efficient means for generating YACs from specific chromosomes and subchromosome fragments and that TAR cloning may be useful for isolating families of genes and specific genes from total genome DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UDP-N-acetylgalactosamine (GalNAc): polypeptide N-acetylgalactosaminyltransferase (polypeptide GalNAc-T) catalyzes transfer of the monosaccharide GalNAc to serine and threonine residues, thereby initiating O-linked oligosaccharide biosynthesis. Previous studies have suggested the possibility of multiple polypeptide GalNAc-Ts, although attachment of saccharide units to polypeptide or lipid in generating oligosaccharide structures in vertebrates has been dependent upon the activity of single gene products. To address this issue and to determine the relevance of Oglycosylation variation in T-cell ontogeny, we have directed Cre/loxP mutagenic recombination to the polypeptide GalNAc-T locus in gene-targeted mice. Resulting deletion in the catalytic region of polypeptide GalNAc-T occurred to completion on both alleles in thymocytes and was found in peripheral T cells, but not among other cell types. Thymocyte O-linked oligosaccharide formation persisted in the absence of a functional targeted polypeptide GalNAc-T allele as determined by O-glycan-specific lectin binding. T-cell development and colonization of secondary lymphoid organs were also normal. These results indicate a complexity in vertebrate O-glycan biosynthesis that involves multiple polypeptide GalNAc-Ts. We infer the potential for protein-specific O-glycan formation governed by distinct polypeptide GalNAc-Ts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Promoter and silencer elements of the immediate 5' flanking region of the gene coding for human factor VII were identified and characterized. The major transcription start site, designated as +1, was determined by RACE (rapid amplification of cDNA ends) analysis of human liver cDNA and was found to be located 50 bp upstream from the translation start site. Two minor transcription start sites were found at bp +32 bp and +37. Progressive deletions of the 5' flanking region were fused to the chloramphenicol acetyltransferase reporter gene and transient expression in HepG2 and HeLa cells was measured. Two promoter elements that were essential for hepatocyte-specific transcription were identified. The first site, FVIIP1, located at bp -19 to +1, functioned independently of orientation or position and contributed about one-third of the promoter activity of the factor VII gene. Electrophoretic mobility-shift, competition, and anti-hepatocyte nuclear factor 4 (HNF4) antibody supershift experiments demonstrated that this site contained an HNF-4 binding element homologous to the promoters in the genes coding for factor IX and factor X. The second site, FVIIP2, located at bp -50 to -26, also functioned independent of orientation or position and contributed about two thirds of the promoter activity in the gene for factor VII. Functional assays with mutant sequences demonstrated that a 10-bp G + C-rich core sequence which shares 90% sequence identity with the prothrombin gene enhancer was essential for the function of the second site. Mobility-shift and competition assays suggested that this site also binds hepatic-specific factors as well as the transcription factor Sp1. Two silencer elements located upstream of the promoter region spanning bp -130 to -103 (FVIIS1 site) and bp -202 to -130 (FVIIS2) were also identified by reporter gene assays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In conjunction with other general initiation factors, the TATA box-binding protein (TBP) can direct basal transcription by RNA polymerase II from TATA-containing promoters, but its stable interaction with TBP-associated factors (TAFs) in the TFIID complex is required both for activator-dependent transcription and for basal transcription directed by an initiator element. We have generated a TATA-binding-defective TFIID complex containing an amino acid substitution in the DNA-binding surface of its TBP subunit. This mutated TFIID is defective in both basal and activated transcription from core promoters containing only a TATA box but supports transcription from initiator-containing promoters independently of the presence or absence of a TATA sequence. Our results show that a functional initiator element is needed to bypass the requirement for an active TATA DNA-binding surface in TFIID and imply that gene-specific transcription can be achieved by modulating distinct core promoter-specific TFIID functions--e.g., TBP-TATA versus TAF-initiator interactions.