93 resultados para Pollen tube. Subcellular localization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian brain, is synthesized by two glutamate decarboxylase isoforms, GAD65 and GAD67. The separate role of the two isoforms is unknown, but differences in saturation with cofactor and subcellular localization suggest that GAD65 may provide reserve pools of GABA for regulation of inhibitory neurotransmission. We have disrupted the gene encoding GAD65 and backcrossed the mutation into the C57BL/6 strain of mice. In contrast to GAD67−/− animals, which are born with developmental abnormalities and die shortly after birth, GAD65−/− mice appear normal at birth. Basal GABA levels and holo-GAD activity are normal, but the pyridoxal 5′ phosphate-inducible apo-enzyme reservoir is significantly decreased. GAD65−/− mice develop spontaneous seizures that result in increased mortality. Seizures can be precipitated by fear or mild stress. Seizure susceptibility is dramatically increased in GAD65−/− mice backcrossed into a second genetic background, the nonobese diabetic (NOD/LtJ) strain of mice enabling electroencephalogram analysis of the seizures. The generally higher basal brain GABA levels in this backcross are significantly decreased by the GAD65−/− mutation, suggesting that the relative contribution of GABA synthesized by GAD65 to total brain GABA levels is genetically determined. Seizure-associated c-fos-like immunoreactivity reveals the involvement of limbic regions of the brain. These data suggest that GABA synthesized by GAD65 is important in the dynamic regulation of neural network excitability, implicate at least one modifier locus in the NOD/LtJ strain, and present GAD65−/− animals as a model of epilepsy involving GABA-ergic pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously shown that human munc13 (hmunc13) is up-regulated by hyperglycemia under in vitro conditions in human mesangial cell cultures. The purpose of the present study was to determine the cellular function of hmunc13. To do this, we have investigated the subcellular localization of hmunc13 in a transiently transfected renal cell line, opossum kidney cells. We have found that hmunc13 is a cytoplasmic protein and is translocated to the Golgi apparatus after phorbol ester stimulation. In addition, cells transfected with hmunc13 demonstrate apoptosis after treatment with phorbol ester, but cells transfected with an hmunc13 deletion mutant in which the diacylglycerol (C1) binding domain is absent exhibit no change in intracellular distribution and no induction of apoptosis in the presence of phorbol ester stimulation. We conclude that both the diacylglycerol-induced translocation and the apoptosis represent functional activity of hmunc13. We have also demonstrated that munc13-1 and munc13-2 are localized mainly to cortical epithelial cells in rat kidney and both are overexpressed under conditions of hyperglycemia in a streptozotocin-treated diabetic rat model. Taken together, our data suggest that hmunc13 serves as a diacylglycerol-activated, PKC-independent signaling pathway capable of inducing apoptosis and that this pathway may contribute to the renal cell complications of hyperglycemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in Tg737 cause a wide spectrum of phenotypes, including random left-right axis specification, polycystic kidney disease, liver and pancreatic defects, hydrocephalus, and skeletal patterning abnormalities. To further assess the biological function of Tg737 and its role in the mutant pathology, we identified the cell population expressing Tg737 and determined the subcellular localization of its protein product called Polaris. Tg737 expression is associated with cells possessing either motile or immotile cilia and sperm. Similarly, Polaris concentrated just below the apical membrane in the region of the basal bodies and within the cilia or flagellar axoneme. The data suggest that Polaris functions in a ciliogenic pathway or in cilia maintenance, a role supported by the loss of cilia on the ependymal cell layer in ventricles of Tg737orpk brains and by the lack of node cilia in Tg737Δ2-3βGal mutants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SF3b155 is an essential spliceosomal protein, highly conserved during evolution. It has been identified as a subunit of splicing factor SF3b, which, together with a second multimeric complex termed SF3a, interacts specifically with the 12S U2 snRNP and converts it into the active 17S form. The protein displays a characteristic intranuclear localization. It is diffusely distributed in the nucleoplasm but highly concentrated in defined intranuclear structures termed “speckles,” a subnuclear compartment enriched in small ribonucleoprotein particles and various splicing factors. The primary sequence of SF3b155 suggests a multidomain structure, different from those of other nuclear speckles components. To identify which part of SF3b155 determines its specific intranuclear localization, we have constructed expression vectors encoding a series of epitope-tagged SF3b155 deletion mutants as well as chimeric combinations of SF3b155 sequences with the soluble cytoplasmic protein pyruvate kinase. Following transfection of cultured mammalian cells, we have identified (i) a functional nuclear localization signal of the monopartite type (KRKRR, amino acids 196–200) and (ii) a molecular segment with multiple threonine-proline repeats (amino acids 208–513), which is essential and sufficient to confer a specific accumulation in nuclear speckles. This latter sequence element, in particular amino acids 208–440, is required for correct subcellular localization of SF3b155 and is also sufficient to target a reporter protein to nuclear speckles. Moreover, this “speckle-targeting sequence” transfers the capacity for interaction with other U2 snRNP components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report here the different ways in which four subunits of the basal transcription/repair factor TFIIH (XPB, XPD, p62 and p44) and the damage recognition XPC repair protein can enter the nucleus. We examined their nuclear localization by transiently expressing the gene products tagged with the enhanced green fluorescent protein (EGFP) in transfected 3T3 cells. In agreement with the identification of more than one putative nuclear localization signal (NLS) in their protein sequences, XPB, XPC, p62 and p44 chimeras were rapidly sorted to the nucleus. In contrast, the XPD–EGFP chimeras appeared mainly localized in the cytoplasm, with a minor fraction of transfectants showing the EGFP-based fluorescence also in the nucleus. The ability of the XPD chimeras to enter the nucleus was confirmed by western blotting on fractionated cell extracts and by functional complementation of the repair defect in the UV5 rodent cells, mutated in the XPD homologous gene. By deletion mutagenesis, we were unable to identify any sequence specific for nuclear localization. In particular, deletion of the putative NLS failed to affect subcellular localization and, conversely, the C-terminal part of XPD containing the putative NLS showed no specific nuclear accumulation. These findings suggest that the nuclear entry of XPD depends on its complexation with other proteins in the cytoplasm, possibly other components of the TFIIH complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This investigation was pursued to test the use of intracellular antibodies (intrabodies) as a means of blocking the pathogenesis of Huntington's disease (HD). HD is characterized by abnormally elongated polyglutamine near the N terminus of the huntingtin protein, which induces pathological protein–protein interactions and aggregate formation by huntingtin or its exon 1-containing fragments. Selection from a large human phage display library yielded a single-chain Fv (sFv) antibody specific for the 17 N-terminal residues of huntingtin, adjacent to the polyglutamine in HD exon 1. This anti-huntingtin sFv intrabody was tested in a cellular model of the disease in which huntingtin exon 1 had been fused to green fluorescent protein (GFP). Expression of expanded repeat HD-polyQ-GFP in transfected cells shows perinuclear aggregation similar to human HD pathology, which worsens with increasing polyglutamine length; the number of aggregates in these transfected cells provided a quantifiable model of HD for this study. Coexpression of anti-huntingtin sFv intrabodies with the abnormal huntingtin-GFP fusion protein dramatically reduced the number of aggregates, compared with controls lacking the intrabody. Anti-huntingtin sFv fused with a nuclear localization signal retargeted huntingtin analogues to cell nuclei, providing further evidence of the anti-huntingtin sFv specificity and of its capacity to redirect the subcellular localization of exon 1. This study suggests that intrabody-mediated modulation of abnormal neuronal proteins may contribute to the treatment of neurodegenerative diseases such as HD, Alzheimer's, Parkinson's, prion disease, and the spinocerebellar ataxias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A unique subfamily of calmodulin-dependent Ca2+-ATPases was recently identified in plants. In contrast to the most closely related pumps in animals, plasma membrane-type Ca2+-ATPases, members of this new subfamily are distinguished by a calmodulin-regulated autoinhibitor located at the N-terminal instead of a C-terminal end. In addition, at least some isoforms appear to reside in non-plasma membrane locations. To begin delineating their functions, we investigated the subcellular localization of isoform ACA2p (Arabidopsis Ca2+-ATPase, isoform 2 protein) in Arabidopsis. Here we provide evidence that ACA2p resides in the endoplasmic reticulum (ER). In buoyant density sucrose gradients performed with and without Mg2+, ACA2p cofractionated with an ER membrane marker and a typical “ER-type” Ca2+-ATPase, ACA3p/ECA1p. To visualize its subcellular localization, ACA2p was tagged with a green fluorescence protein at its C terminus (ACA2-GFPp) and expressed in transgenic Arabidopsis. We collected fluorescence images from live root cells using confocal and computational optical-sectioning microscopy. ACA2-GFPp appeared as a fluorescent reticulum, consistent with an ER location. In addition, we observed strong fluorescence around the nuclei of mature epidermal cells, which is consistent with the hypothesis that ACA2p may also function in the nuclear envelope. An ER location makes ACA2p distinct from all other calmodulin-regulated pumps identified in plants or animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemically induced skin carcinomas in mice are a paradigm for epithelial neoplasia, where oncogenic ras mutations precede p53 and INK4a/ARF mutations during the progression toward malignancy. To explore the biological basis for these genetic interactions, we studied cellular responses to oncogenic ras in primary murine keratinocytes. In wild-type keratinocytes, ras induced a cell-cycle arrest that displayed some features of terminal differentiation and was accompanied by increased expression of the p19ARF, p16INK4a, and p53 tumor suppressors. In ARF-null keratinocytes, ras was unable to promote cell-cycle arrest, induce differentiation markers, or properly activate p53. Although oncogenic ras produced a substantial increase in both nucleolar and nucleoplasmic p19ARF, Mdm2 did not relocalize to the nucleolus or to nuclear bodies but remained distributed throughout the nucleoplasm. This result suggests that p19ARF can activate p53 without overtly affecting Mdm2 subcellular localization. Nevertheless, like p53-null keratinocytes, ARF-null keratinocytes were transformed by oncogenic ras and rapidly formed carcinomas in vivo. Thus, oncogenic ras can activate the ARF-p53 program to suppress epithelial cell transformation. Disruption of this program may be important during skin carcinogenesis and the development of other carcinomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recombinant cellulose-binding domain (CBD) derived from the cellulolytic bacterium Clostridium cellulovorans was found to modulate the elongation of different plant cells in vitro. In peach (Prunus persica L.) pollen tubes, maximum elongation was observed at 50 μg mL−1 CBD. Pollen tube staining with calcofluor showed a loss of crystallinity in the tip zone of CBD-treated pollen tubes. At low concentrations CBD enhanced elongation of Arabidopsis roots. At high concentrations CBD dramatically inhibited root elongation in a dose-responsive manner. Maximum effect on root hair elongation was at 100 μg mL−1, whereas root elongation was inhibited at that concentration. CBD was found to compete with xyloglucan for binding to cellulose when CBD was added first to the cellulose, before the addition of xyloglucan. When Acetobacter xylinum L. was used as a model system, CBD was found to increase the rate of cellulose synthase in a dose-responsive manner, up to 5-fold compared with the control. Electron microscopy examination of the cellulose ribbons produced by A. xylinum showed that CBD treatment resulted in a splayed ribbon composed of separate fibrillar subunits, compared with a thin, uniform ribbon in the control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the isolation and characterization of CDC45, which encodes a polypeptide of 650 amino acids that is essential for the initiation of chromosomal DNA replication in the budding yeast, Saccharomyces cerevisiae. CDC45 genetically interacts with at least two members of the MCM (minichromosome maintenance) family of replication genes, CDC46 and CDC47, which are proposed to perform a role in restricting initiation of DNA replication to once per cell cycle. Like mutants in several MCM genes, alleles of CDC45 also show a severe minichromosome maintenance defect. Together, these observations imply that Cdc45p performs a role in the control of initiation events at chromosomal replication origins. We investigated this possibility further and present evidence demonstrating that Cdc45p is assembled into complexes with one MCM family member, Cdc46p/Mcm5p. These observations point to a role for Cdc45p in controlling the early steps of chromosomal DNA replication in conjunction with MCM polypeptide complexes. Unlike the MCMs, however, the subcellular localization of Cdc45p does not vary with the cell cycle, making it likely that Cdc45p interacts with MCMs only during the nuclear phase of MCM localization in G1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of environmental stresses on the subcellular localization of PKN were investigated in NIH 3T3, BALB/c 3T3, and Rat-1 cells. The immunofluorescence of PKN resided prominently in the cytoplasmic region in nonstressed cells. When these cells were treated at 42 degrees C, there was a time-dependent decrease of the immunofluorescence of PKN in the cytoplasmic region that correlated with an increase within the nucleus as observed by confocal microscope. After incubation at 37 degrees C following beat shock, the immunofluorescence of PKN returned to the perinuclear and cytoplasmic regions from the nucleus. The nuclear translocation of PKN by heat shock was supported by the biochemical subcellular fractionation and immunoblotting. The nuclear localization of PKN was also observed when the cells were exposed to other stresses such as sodium arsenite and serum starvation. These results raise the possibility that there is a pathway mediating stress signals from the cytosol to the nucleus through PKN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nuclear import of the nuclear factor of activated T cells (NFAT)-family transcription factors is initiated by the protein phosphatase calcineurin. Here we identify a regulatory region of NFAT1, N terminal to the DNA-binding domain, that controls nuclear import of NFAT1. The regulatory region of NFAT1 binds directly to calcineurin, is a substrate for calcineurin in vitro, and shows regulated subcellular localization identical to that of full-length NFAT1. The corresponding region of NFATc likewise binds calcineurin, suggesting that the efficient activation of NFAT1 and NFATc by calcineurin reflects a specific targeting of the phosphatase to these proteins. The presence in other NFAT-family transcription factors of several sequence motifs from the regulatory region of NFAT1, including its probable nuclear localization sequence, indicates that a conserved protein domain may control nuclear import of all NFAT proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A constitutively active form of fibroblast growth factor 2 (FGFR2) was identified in rat osteosarcoma (ROS) cells by an expression cloning strategy. Unlike other tyrosine kinase receptors activated by N-terminal truncation in tumors, this receptor, FGFR2-ROS, contains an altered C terminus generated from chromosomal rearrangement with a novel gene, designated FGFR activating gene 1 (FRAG1). While the removal of the C terminus slightly activates FGFR2, the presence of the FRAG1 sequence drastically stimulates the transforming activity and autophosphorylation of the receptor. FGFR2-ROS is expressed as a unusually large protein and is highly phosphorylated in NIH 3T3 transfectants. FRAG1 is ubiquitously expressed and encodes a predicted protein of 28 kDa lacking significant structural similarity to known proteins. Epitope-tagged FRAG1 protein showed a perinuclear localization by immunofluorescence staining. The highly activated state of FGFR2-ROS appears to be attributed to constitutive dimer formation and higher phosphorylation level as well as possibly altered subcellular localization. These results indicate a unique mechanism of receptor activation by a C terminus alteration through a chromosomal fusion with FRAG1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunophilins are intracellular receptors for the immunosuppressants cyclosporin A, FK506, and rapamycin. In addition to their use in organ transplantation, these natural products have been used to investigate signaling pathways in yeast, plant, and mammalian cells. We have recently described the identification of an immunosuppressant-sensitive signaling pathway in and the purification of several immunophilins from Vicia faba plants. We now report the molecular characterization of a 15 kDa FK506- and rapamycin-binding protein from V. faba (VfFKBP15). The amino acid sequence deduced from the cDNA starts with a signal peptide of 22 hydrophobic amino acids. The core region of VfFKBP15 is most similar to yeast and mammalian FKBP13 localized in the endoplasmic reticulum (ER). In addition, VfFKBP15 has a carboxyl-terminal sequence that is ended with SSEL, a putative ER retention signal. These findings suggest that VfFKBP15 is a functional homolog of FKBP13 from other organisms. Interestingly, two distinct cDNAs corresponding to two isoforms of FKBP15 have been cloned from Arabidopsis and also identified from rice data base, suggesting that pFKBP15 (plant FKBP15) is encoded by a small gene family in plants. This adds to the diversity of plant FKBP members even with the same subcellular localization and is in contrast with the situation in mammalian and yeast systems in which only one FKBP13 gene has been found. Like the mammalian and yeast FKBP13, the recombinant VfFKBP15 protein has rotamase activity that is inhibited by both FK506 and rapamycin with a Ki value of 30 nM and 0.9 nM, respectively, illustrating that VfFKBP15 binds rapamycin in preference over FK506. The mRNA of VfFKBP15 is ubiquitously expressed in various plant tissues including leaves, stems, and roots, consistent with the ER localization of the protein. Levels of VfFKBP15 mRNA are elevated by heat shock, suggesting a possible role for this FKBP member under stress conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunohistochemical visualization of the rat vesicular acetylcholine transporter (VAChT) in cholinergic neurons and nerve terminals has been compared to that for choline acetyltransferase (ChAT), heretofore the most specific marker for cholinergic neurons. VAChT-positive cell bodies were visualized in cerebral cortex, basal forebrain, medial habenula, striatum, brain stem, and spinal cord by using a polyclonal anti-VAChT antiserum. VAChT-immuno-reactive fibers and terminals were also visualized in these regions and in hippocampus, at neuromuscular junctions within skeletal muscle, and in sympathetic and parasympathetic autonomic ganglia and target tissues. Cholinergic nerve terminals contain more VAChT than ChAT immunoreactivity after routine fixation, consistent with a concentration of VAChT within terminal neuronal arborizations in which secretory vesicles are clustered. These include VAChT-positive terminals of the median eminence or the hypothalamus, not observed with ChAT antiserum after routine fixation. Subcellular localization of VAChT in specific organelles in neuronal cells was examined by immunoelectron microscopy in a rat neuronal cell line (PC 12-c4) expressing VAChT as well as the endocrine and neuronal forms of the vesicular monoamine transporters (VMAT1 and VMAT2). VAChT is targeted to small synaptic vesicles, while VMAT1 is found mainly but not exclusively on large dense-core vesicles. VMAT2 is found on large dense-core vesicles but not on the small synaptic vesicles that contain VAChT in PC12-c4 cells, despite the presence of VMAT2 immunoreactivity in central and peripheral nerve terminals known to contain monoamines in small synaptic vesicles. Thus, VAChT and VMAT2 may be specific markers for "cholinergic" and "adrenergic" small synaptic vesicles, with the latter not expressed in nonstimulated neuronally differentiated PC12-c4 cells.