41 resultados para sickness absence
Resumo:
Translesion replication (TR) past a cyclobutane pyrimidine dimer in Escherichia coli normally requires the UmuD′2C complex, RecA protein, and DNA polymerase III holoenzyme (pol III). However, we find that efficient TR can occur in the absence of the Umu proteins if the 3′–5′ exonuclease proofreading activity of the pol III ɛ-subunit also is disabled. TR was measured in isogenic uvrA6 ΔumuDC strains carrying the dominant negative dnaQ allele, mutD5, or ΔdnaQ spq-2 mutations by transfecting them with single-stranded M13-based vectors containing a specifically located cis-syn T–T dimer. As expected, little TR was observed in the ΔumuDC dnaQ+ strain. Surprisingly, 26% TR occurred in UV-irradiated ΔumuDC mutD5 cells, one-half the frequency found in a uvrA6 umuDC+mutD5 strain. lexA3 (Ind−) derivatives of the strains showed that this TR was contingent on two inducible functions, one LexA-dependent, responsible for ≈70% of the TR, and another LexA-independent, responsible for the remaining ≈30%. Curiously, the ΔumuDC ΔdnaQ spq-2 strain exhibited only the LexA-independent level of TR. The cause of this result appears to be the spq-2 allele, a dnaE mutation required for viability in ΔdnaQ strains, since introduction of spq-2 into the ΔumuDC mutD5 strain also reduces the frequency of TR to the LexA-independent level. The molecular mechanism responsible for the LexA-independent TR is unknown but may be related to the UVM phenomenon [Palejwala, V. A., Wang, G. E., Murphy, H. S. & Humayun, M. Z. (1995) J. Bacteriol. 177, 6041–6048]. LexA-dependent TR does not result from the induction of pol II, since TR in the ΔumuDC mutD5 strain is unchanged by introduction of a ΔpolB mutation.
Resumo:
Polycyclic aromatic hydrocarbons (PAH) are widespread environmental contaminants, and some are potent carcinogens in rodents. Carcinogenic PAH are activated in cells to metabolites that react with DNA to form stable covalent DNA adducts. It has been proposed [Cavalieri, E. L. & Roger, E. G. (1995) Xenobiotica 25, 677–688] that unstable DNA adducts are also formed and that apurinic sites in the DNA resulting from unstable PAH adducts play a key role in the initiation of cancer. The potent carcinogen dibenzo[a,l]pyrene (DB[a,l]P) is activated in cells to (+)-syn- and (−)-anti-DB[a,l]P-11,12-diol-13,14-epoxide (DB[a,l]PDE), which have been shown to form stable adducts with DNA. To evaluate the importance of unstable PAH adducts, we compared stable adduct formation to apurinic site formation. Stable DB[a,l]PDE adducts were determined by 33P-postlabeling and HPLC. To measure apurinic sites they were converted to strand breaks, and these were monitored by examining the integrity of a particular restriction fragment of the dihydrofolate reductase gene. The method easily detected apurinic sites resulting from methylation by treatment of cells or DNA with dimethyl sulfate or from reaction of DNA with DB[a,l]P in the presence of horseradish peroxidase. We estimate the method could detect 0.1 apurinic site in the 14-kb fragment examined. However, apurinic sites were below our limit of detection in DNA treated directly with (+)-syn- or (−)-anti-DB[a,l]PDE or in DNA from Chinese hamster ovary B11 cells so treated, although in these samples the frequency of stable adducts ranged from 3 to 10 per 14 kb. We also treated the human mammary carcinoma cell line MCF-7 with DB[a,l]P and again could not detect significant amounts of unstable adducts. These results indicate that the proportion of stable adducts formed by DB[a,l]P activated in cells and its diol epoxides is greater than 99% and suggest a predominant role for stable DNA adducts in the carcinogenic activity of DB[a,l]P.
Resumo:
dinP is an Escherichia coli gene recently identified at 5.5 min of the genetic map, whose product shows a similarity in amino acid sequence to the E. coli UmuC protein involved in DNA damage-induced mutagenesis. In this paper we show that the gene is identical to dinB, an SOS gene previously localized near the lac locus at 8 min, the function of which was shown to be required for mutagenesis of nonirradiated λ phage infecting UV-preirradiated bacterial cells (termed λUTM for λ untargeted mutagenesis). A newly constructed dinP null mutant exhibited the same defect for λUTM as observed previously with a dinB::Mu mutant, and the defect was complemented by plasmids carrying dinP as the only intact bacterial gene. Furthermore, merely increasing the dinP gene expression, without UV irradiation or any other DNA-damaging treatment, resulted in a strong enhancement of mutagenesis in F′lac plasmids; at most, 800-fold increase in the G6-to-G5 change. The enhanced mutagenesis did not depend on recA, uvrA, or umuDC. Thus, our results establish that E. coli has at least two distinct pathways for SOS-induced mutagenesis: one dependent on umuDC and the other on dinB/P.
Resumo:
Signal transduction in response to ligand recognition by T cell receptors regulates T cell fate within and beyond the thymus. Herein we examine the involvement of the CD4 molecule in the regulation of T helper cell survival. T helper cells that lack CD4 expression are prone to apoptosis and show diminished survival after adoptive transfer to irradiated recipients. The helper lineage in CD4−/− animals shows a higher than normal apparent rate of cell division and is also enriched for cells exhibiting a memory cell phenotype. Thus the data point to a necessary role for CD4 in the regulation of T helper cell survival and homeostasis.
Resumo:
Neurotrophins regulate neuronal cell survival and synaptic plasticity through activation of Trk receptor tyrosine kinases. Binding of neurotrophins to Trk receptors results in receptor autophosphorylation and downstream phosphorylation cascades. Here, we describe an approach to use small molecule agonists to transactivate Trk neurotrophin receptors. Activation of TrkA receptors in PC12 cells and TrkB in hippocampal neurons was observed after treatment with adenosine, a neuromodulator that acts through G protein-coupled receptors. These effects were reproduced by using the adenosine agonist CGS 21680 and were counteracted with the antagonist ZM 241385, indicating that this transactivation event by adenosine involves adenosine 2A receptors. The increase in Trk activity could be inhibited by the use of the Src family-specific inhibitor, PP1, or K252a, an inhibitor of Trk receptors. In contrast to other G protein-coupled receptor transactivation events, adenosine used Trk receptor signaling with a longer time course. Moreover, adenosine activated phosphatidylinositol 3-kinase/Akt through a Trk-dependent mechanism that resulted in increased cell survival after nerve growth factor or brain-derived neurotrophic factor withdrawal. Therefore, adenosine acting through the A2A receptors exerts a trophic effect through the engagement of Trk receptors. These results provide an explanation for neuroprotective actions of adenosine through a unique signaling mechanism and raise the possibility that small molecules may be used to elicit neurotrophic effects for the treatment of neurodegenerative diseases.
Resumo:
Organisms producing resting stages provide unique opportunities for reconstructing the genetic history of natural populations. Diapausing seeds and eggs often are preserved in large numbers, representing entire populations captured in an evolutionary inert state for decades and even centuries. Starting from a natural resting egg bank of the waterflea Daphnia, we compare the evolutionary rates of change in an adaptive quantitative trait with those in selectively neutral DNA markers, thus effectively testing whether the observed genetic changes in the quantitative trait are driven by natural selection. The population studied experienced variable and well documented levels of fish predation over the past 30 years and shows correlated genetic changes in phototactic behavior, a predator-avoidance trait that is related to diel vertical migration. The changes mainly involve an increased plasticity response upon exposure to predator kairomone, the direction of the changes being in agreement with the hypothesis of adaptive evolution. Genetic differentiation through time was an order of magnitude higher for the studied behavioral trait than for neutral markers (DNA microsatellites), providing strong evidence that natural selection was the driving force behind the observed, rapid, evolutionary changes.
Resumo:
The drugs in clinical use against African sleeping sickness are toxic, costly, or inefficient. We show that Trypanosoma brucei, which causes this disease, has very low levels of CTP, which are due to a limited capacity for de novo synthesis and the lack of salvage pathways. The CTP synthetase inhibitors 6-diazo-5-oxo-l-norleucine (DON) and α-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (acivicin) reduced the parasite CTP levels even further and inhibited trypanosome proliferation in vitro and in T. brucei-infected mice. In mammalian cells, DON mainly inhibits de novo purine biosynthesis, a pathway lacking in trypanosomes. We could rescue DON-treated human and mouse fibroblasts by the addition of the purine base hypoxanthine to the growth medium. For treatment of sleeping sickness, we propose the use of CTP synthetase inhibitors alone or in combination with appropriate nucleosides or bases.
Resumo:
This review presents a view of hyperalgesia and allodynia not typical of the field as a whole. That is, exaggerated pain is presented as one of many natural consequences of peripheral infection and injury. The constellation of changes that results from such immune challenges is called the sickness response. This sickness response results from immune-to-brain communication initiated by proinflammatory cytokines released by activated immune cells. In response to signals it receives from the immune system, the brain orchestrates the broad array of physiological, behavioral, and hormonal changes that comprise the sickness response. The neurocircuitry and neurochemistry of sickness-induced hyperalgesia are described. One focus of this discussion is on the evidence that spinal cord microglia and astrocytes are key mediators of sickness-induced hyperalgesia. Last, evidence is presented that hyperalgesia and allodynia also result from direct immune activation, rather than neural activation, of these same spinal cord glia. Such glial activation is induced by viruses such as HIV-1 that are known to invade the central nervous system. Implications of exaggerated pain states created by peripheral and central immune activation are discussed.
Resumo:
The H-2Ld alloreactive 2C T cell receptor (TCR) is commonly considered as being positively selected on the H-2Kb molecule. Surprisingly, 2C TCR+ CD8+ single-positive T cells emerge in massive numbers in fetal thymic organ culture originating from 2C transgenic, H-2KbDb−/− (2C+KbDb−/−) but not in fetal thymic organ culture from β2-microglobulin−/− 2C transgenic animals. Mature CD8+ T cells are observed in newborn but not in adult 2C+KbDb−/− mice. These CD8+ T cells express the α4β7 integrin, which allows them to populate the intestine, a pattern of migration visualized by intrathymic injection of FITC and subsequent accrual of FITC-labeled lymphocytes in the gut. We conclude that the 2C TCR is reactive not only with H-2Ld and H-2Kb, but also with nonclassical MHC class I products to enable positive selection of 2C+ T cells in the fetal and newborn thymus and to support their maintenance in the intestine.
Resumo:
The RAD27 gene of Saccharomyces cerevisiae encodes a 5′-3′ flap exo/endonuclease, which plays an important role during DNA replication for Okazaki fragment maturation. Genetic studies have shown that RAD27 is not essential for growth, although rad27Δ mutants are temperature sensitive. Moreover, they exhibit increased sensitivity to alkylating agents, enhanced spontaneous recombination, and repetitive DNA instability. The conditional lethality conferred by the rad27Δ mutation indicates that other nuclease(s) can compensate for the absence of Rad27. Indeed, biochemical and genetical analyses indicate that Okazaki fragment processing can be assured by other enzymatic activities or by alternative pathways such as homologous recombination. Here we present the results of a screen that makes use of a synthetic lethality assay to identify functions required for the survival of rad27Δ strains. Altogether, we confirm that all genes of the Rad52 recombinational repair pathway are required for the survival of rad27Δ strains at both permissive (23°C) and semipermissive (30°C) temperatures for growth. We also find that several point mutations that confer weaker phenotypes in mitotic than in meiotic cells (rad50S, mre11s) and additional gene deletions (com1/sae2, srs2) exhibit synthetic lethality with rad27Δ and that rad59Δ exhibits synergistic effects with rad27Δ. This and previous studies indicate that homologous recombination is the primary, but not only, pathway that functions to bypass the replication defects that arise in the absence of the Rad27 protein.
Resumo:
Globin genes are subject to tissue-specific and developmental stage-specific regulation. A switch from human fetal (gamma)-to adult (beta)-globin expression occurs within erythroid precursor cells of the adult lineage. Previously we and others showed by targeted gene disruption that the zinc finger gene, erythroid Krüppel-like factor (EKLF), is required for expression of the beta-globin gene in mice, presumably through interaction with a high-affinity binding site in the proximal promoter. To examine the role of EKLF in the developmental regulation of the human gamma-globin gene we interbred EKLF heterozygotes (+/-) with mice harboring a human beta-globin yeast artificial chromosome transgene. We find that in the absence of EKLF, while human beta-globin expression is dramatically reduced, gamma-globin transcripts are elevated approximately 5-fold. Impaired silencing of gamma-globin expression identifies EKLF as the first transcription factor participating quantitatively in the gamma-globin to beta-globin switch. Our findings are compatible with a competitive model of switching in which EKLF mediates an adult stage-specific interaction between the beta-globin gene promoter and the locus control region that excludes the gamma-globin gene.
Resumo:
Core binding factor beta (CBF beta) is considered to be a transcriptional coactivator that dimerizes with transcription factors core binding factor alpha 1 (CBFA1), -2, and -3, and enhances DNA binding capacity of these transcription factors. CBF beta and CBFA2, which is also called acute myeloid leukemia 1 gene, are frequently involved in chromosomal translocations in human leukemia. To elucidate the function of CBF beta, mice carrying a mutation in the Cbfb locus were generated. Homozygous mutant embryos died between embryonic days 11.5-13.5 due to hemorrhage in the central nervous system. Mutant embryos had primitive erythropoiesis in yolk sac but lacked definitive hematopoiesis in fetal liver. In the yolk sac of mutant embryos, no erythroid or myeloid progenitors of definitive hematopoietic origin were detected, and the expression of flk-2/flt-3, the marker gene for early precursor cells of definitive hematopoiesis, was absent. These data suggest that Cbfb is essential for definitive hematopoiesis in liver, especially for the commitment to early hematopoietic precursor cells.
Resumo:
Osteoclastogenesis is a complex process that is facilitated by bone marrow stromal cells (SCs). To determine if SCs are an absolute requirement for the differentiation of human hematopoietic precursors into fully mature, osteoclasts (OCs), CD34+ cells were mobilized into the peripheral circulation with granulocyte colony-stimulating factor, harvested by leukapheresis, and purified by magnetic-activated cell sorting. This procedure yields a population of CD34+ cells that does not contain SC precursors, as assessed by the lack of expression of the SC antigen Stro-1, and that differentiates only into hematopoietic cells. We found that CD34+, Stro-1- cells cultured with a combination of granulocyte/macrophage colony-stimulating factor, interleukin 1, and interleukin 3 generated cells that fulfill current criteria for the characterization of OCs, including multinucleation, presence of tartrate-resistant acid phosphatase, and expression of the calcitonin and vitronectin receptors and of pp60c-src tyrosine kinase. These OCs also expressed mRNA for the noninserted isoform of the calcitonin receptor and excavated characteristic resorption pits in devitalized bone slices. These data demonstrate that accessory SCs are not essential for human osteoclastogenesis and that granulocyte colony-stimulating factor treatment mobilizes OC precursors into the peripheral circulation.