48 resultados para transmisión de calor
em Universidad Politécnica de Madrid
Resumo:
Esta publicacion está basada en unos apuntes para la parte de Transmisión del Calor de las asignaturas de la ETSAM. Sin embargo, con el tiempo se ha añadido otro material extra que excede ampliamente el contenido del curso.
Resumo:
Esta publicacion está basada en unos apuntes para la parte de Transmisión del Calor de las asignaturas de la ETSAM. Sin embargo, con el tiempo se ha añadido otro material extra que excede ampliamente el contenido del curso.
Resumo:
Esta publicacion está basada en unos apuntes para la parte de Transmisión del Calor de las asignaturas de la ETSAM. Sin embargo, con el tiempo se ha añadido otro material extra que excede ampliamente el contenido del curso.
Resumo:
Esta publicacion está basada en unos apuntes para la parte de Transmisión del Calor de las asignaturas de la ETSAM. Sin embargo, con el tiempo se ha añadido otro material extra que excede ampliamente el contenido del curso.
Resumo:
Esta publicacion está basada en unos apuntes para la parte de Transmisión del Calor de las asignaturas de la ETSAM. Sin embargo, con el tiempo se ha añadido otro material extra que excede ampliamente el contenido del curso.
Resumo:
Existe un creciente interés internacional por el ahorro energético y la sostenibilidad en la edificación con importantes repercusiones en la Arquitectura. La inercia térmica es un parámetro fundamental para poder valorar energéticamente un edificio en condiciones reales. Para ello es necesario cambiar el enfoque tradicional de transmisión de calor en régimen estacionario por otro en régimen dinámico en el que se analizan las ondas térmicas y el flujo de calor oscilante que atraviesan los cerramientos. Los parámetros que definen la inercia térmica son: el espesor, la difusividad y el ciclo térmico. A su vez la difusividad está determinada por la conductividad térmica, la densidad y el calor específico del material. De estos parámetros la conductividad es el más complejo, variable y difícil de medir, especialmente en los cerramientos de tierra debido a su heterogeneidad y complejidad higrotérmica. En general, los métodos de medida de la conductividad o transmitancias en los paramentos presentan inconvenientes a la hora de medir un edificio construido con tierra: dificultades de implementación, el elevado coste o la fiabilidad de los resultados, principalmente. El Método de la Aguja Térmica (MAT) se basa en el principio de la evolución en el tiempo del calor emitido por una fuente lineal al insertarse en el seno de un material. Se ha escogido este método porque resulta práctico, de bajo coste y de fácil aplicación a gran escala pero tiene serios problemas de fiabilidad y exactitud. En esta tesis se desarrolla un método de medida de la conductividad térmica para Piezas de Albañilería de Tierra Cruda en laboratorio basado en el MAT, se mejora su fiabilidad, se analiza su incertidumbre, se compara con otros métodos de referencia y se aplica en adobes, Bloques de Tierra Comprimida y probetas de tierra estabilizada con distintas proporciones de paja. Este método servirá de base a una posterior aplicación in situ. Finalmente se proponen modelos matemáticos para mejorar la exactitud del dispositivo utilizado y para la estimación de la conductividad de cerramientos de tierra en función de su densidad. Con los resultados obtenidos se analizan las posibilidades de amortiguación y retardo de las ondas térmicas y capacidad de almacenaje de energía de los cerramientos en función de su densidad y humedad. There is growing international interest in energy saving and sustainability in buildings with significant impact on Architecture. Thermal inertia is a key parameter to assess energy in buildings in real conditions. This requires changing the traditional approach to heat transfer in steady state by another in dynamic regime which analyzes the thermal waves and oscillating heat flux passing through the external walls. The parameters defining the thermal inertia are: the thickness, the diffusivity and the thermal cycle. In turn, the diffusivity is determined by the thermal conductivity, density and specific heat of the material. Of these parameters, thermal conductivity is the most complex, variable and difficult to measure, especially in earth walls due to their heterogeneity and hygrothermal complexity. In general, the methods of measurement of conductivity and transmittance in walls have drawbacks when measuring a building with earth: implementation difficulties, high cost, or reliability of the results, mainly. The Thermal Needle Procedure (TNP) is based on the principle of evolution in time of heat from a line source when inserted within a material. This method was chosen because it is a practical, low cost and easy to implement on a large scale but has serious problems of reliability and accuracy. This thesis develops a laboratory method for measuring the thermal conductivity of Masonry Units Unfire Earth-based based on TNP, its uncertainty is analyzed, compared to other reference methods and applies in adobes, Compressed Earth Blocks and stabilized soil specimens with different proportions of straw. This method will form the basis of a subsequent application in situ. Finally, mathematical models are proposed to improve the accuracy of the device used, and to estimate the conductivity of earth enclosures depending on its density. With the results obtained earth enclosures are analyzed to estimate their possibilities of delay and buffer of termal waves and energy storage capacity according to their density and moisture.
Resumo:
Las empresas explotadoras de yacimientos de petróleo y geotérmicos diseñan y construyen sus instalaciones optimizándolas según dos características especialmente representativas: su temperatura y su presión. Por ello, tener información precisa sobre ambos aspectos lo antes posible puede permitir ahorros importantes en las inversiones en infraestructuras y también acortar los plazos de comienzo de explotación; ambos, aspectos esenciales en la rentabilidad del yacimiento. La temperatura estática de una formación es la temperatura existente antes del inicio de las tareas de perforación del yacimiento. Las operaciones de perforación tienen como objetivo perforar, evaluar y terminar un pozo para que produzca de una forma rentable. Durante estas tareas se perturba térmicamente la formación debido a la duración de la perforación, la circulación de fluidos de refrigeración, la diferencia de temperaturas entre la formación y el fluido que perfora, el radio, la difusividad térmica de las formaciones y la tecnología de perforación [7]. La principal herramienta para determinar la temperatura estática de formación son las medidas de temperaturas en los pozos. Estas medidas de temperatura se realizan una vez cesados los trabajos de perforación y circulación de fluidos. El conjunto de medidas de temperatura obtenidas es una serie de valores ascendentes, pero no llega a alcanzar el valor de la temperatura estática de la formación. Para estimar esta temperatura se plantean las ecuaciones diferenciales que describen los fenómenos de transmisión de calor en el yacimiento [14]. Estos métodos se emplean tanto en yacimientos geotérmicos como en yacimientos de petróleo indistintamente [16]. Cada uno de ellos modela el problema de transmisión de calor asociado de una forma distinta, con hipótesis simplificadoras distintas. Se ha comprobado que la aplicación de los distintos métodos a un yacimiento en concreto presenta discrepancias en cuanto a los resultados obtenidos [2,16]. En muchos de los yacimientos no se dispone de información sobre los datos necesarios para aplicar el método de estimación. Esto obliga a adoptar una serie de hipótesis que comprometen la precisión final del método utilizado. Además, puede ocurrir que el método elegido no sea el que mejor reproduce el comportamiento del yacimiento. En el presente trabajo se han analizado los distintos métodos de cálculo. De la gran variedad de métodos existentes [9] se han seleccionado los cuatro más representativos [2,7]: Horner (HM), flujo radial y esférico (SRM), de las dos medidas (TLM) y de fuente de calor cilíndrica (CSM). Estos métodos se han aplicado a una serie de yacimientos de los cuales se conoce la temperatura estática de la formación. De cada yacimiento se disponía de datos tanto de medidas como de las propiedades termo-físicas. Estos datos, en ocasiones, eran insuficientes para la aplicación de todos los métodos, lo cual obligo a adoptar hipótesis sobre los mismos. Esto ha permitido evaluar la precisión de cada método en cada caso. A partir de los resultados obtenidos se han formulado una colección de criterios que permiten seleccionar qué método se adapta mejor para el caso de un yacimiento concreto, de tal manera que el resultado final sea lo más preciso posible. Estos criterios se han fijado en función de las propiedades termo-físicas del yacimiento, que determinan el tipo de yacimiento, y del grado de conocimiento que se dispone del yacimiento objeto de estudio.
Resumo:
Es importante disponer de una herramienta con la cual diseñar dispositivos de uso industrial y comercial que trabajen con metales líquidos (fuentes de neutrones de alta intensidad, núcleos de sistemas de transmutación nuclear, reactores de fisión de nueva generación, instalaciones de irradiación de materiales o reactores de fusión nuclear). Los códigos CFD (Computational Fluid Dynamics) son una de esas herramientas, y la manera de llevar a cabo su validación es la simulación de experimentos existentes. La turbulencia y la presencia de dos o más fases, son los dos principales problemas a los que tiene que hacer frente un código CFD. La mayoría de los modelos de turbulencia presentes en los códigos CFD se basan en considerar la proporcionalidad directa entre el transporte de cantidad de movimiento turbulento y el transporte turbulento de calor. Precisamente, el coeficiente de difusión del calor turbulento, se asume que sea proporcional a la viscosidad turbulenta a través de una constante empírica, llamada número de Prandtl turbulento. El valor de este número, en los códigos comerciales está entre 0,9 y 0,85 dependiendo del modelo de turbulencia, lo cual significa que en los códigos se asume que el transporte turbulento tanto de cantidad de movimiento como de calor, son prácticamente equivalentes. Esta asunción no es cierta en los flujos de metales líquidos, donde se demuestra que la transmisión de calor por turbulencia es pequeña frente a la transmisión de calor molecular. La solución pasa por aumentar el número de Prandtl turbulento, o abandonar la analogía de Reynolds, en el tratamiento de la turbulencia. Por otro lado, en los metales líquidos la capa límite térmica es más ancha que la de velocidad, y las funciones de pared incluidas en los códigos no satisfacen adecuadamente los flujos turbulentos de los fluidos con bajo número de Prantdl (los metales líquidos). Sí serían adecuados, si el mallado es tal, que la celda más cercana a la pared, está dentro de la subcapa laminar, en la cual la propiedad dominante es la conductividad molecular. En la simulación de flujo multifase los códigos se encuentran con una serie de dificultades, que en el caso de que las densidades de los fluidos que intervienen sean muy diferentes entre sí (como ocurre con los metales líquidos y los gases), serán aún mayores. La modelización de la interfase gas metal líquido, así como el encontrar una correlación válida para los coeficientes de resistencia y sustentación para el movimiento de las burbujas en el seno del metal líquido, son dos de los principales retos en la simulación de este tipo de flujos. Las dificultades no se limitan sólo a la simulación mediante CFD, las medidas experimentales de velocidad de las burbujas y del metal líquido también son complicadas. Hay parámetros que no se pueden definir bien: la trayectoria y la forma de las burbujas entre ellos. En el campo de aplicación industrial de los metales líquidos, los altos valores de los coeficientes de expansión volumétrica y de conductividad térmica hacen que estos fluidos sean muy atractivos en la refrigeración por convección libre en dispositivos de alta densidad de potencia. Tomando como base uno de los diseños de ADS (Accelerator Driven System), y teniendo en cuenta la dificultad que conlleva el uso de múltiples modelos físicos, los cálculos realizados muestran cómo, en caso de fallo eléctrico, la operación de la instalación puede continuar de forma segura. Para la validación de los códigos CFD en su uso como herramienta de diseño, uno de los fenómenos donde cuantitativamente más dificultades encuentran los códigos es en los que aparecen en la modelización de las superficies libres. Un buen ajuste de los modelos multifase y de turbulencia es imprescindible en este tipo de simulaciones. Efectivamente, en la instalación de irradiación de materiales IFMIF, la formación de ondas en la superficie libre del flujo de Litio, es un fenómeno que hay que tratar de evitar, y además se requiere predecir las temperaturas, para ver si hay peligro de ebullición del metal líquido. La simulación llevada a cabo se enfoca al análisis termohidráulico. Variando la velocidad de inyección de Litio desde 10 hasta 20 m/s, se comprueba que las temperaturas máximas quedan alejadas del punto de ebullición del Litio, debido al aumento de presión producido por la fuerza centrífuga. Una de las cuestiones más críticas que se presentan en las fuentes de neutrones sería la refrigeración de la ventana metálica sobre la que incide el haz de protones. La simulación de experimentos como MEGAPIE y TS-1, permite la “visualización” de recirculación en el flujo, de los puntos de estancamiento, de los puntos calientes, etc, y da una fotografía de las zonas críticas del diseño.
Resumo:
En la actualidad, el crecimiento de la población y el desarrollo tecnológico de nuestros tiempos han originado novedosas formas de confort para los habitantes, lo cual a su vez se traduce en una demanda creciente de energía. No obstante, el concepto energético está llegando a la conciencia y es necesario adaptarse a la nueva situación, por lo tanto, es imprescindible el estudio y el aprovechamiento de nuevos sistemas constructivos de cerramientos, como pueden ser los cerramientos multicapas ligeros, que presentan características favorables para el ahorro en el consumo energético, y a su vez pueden ser industrializados, obteniendo beneficios, como la mejora de la calidad, el acortamiento de plazos constructivos, mayor seguridad, altas prestaciones, mayor ligereza, más espacio habitable, entre otros. El desarrollo de esta tesis doctoral esta centrado en definir tres propuestas de Cerramientos Multicapas Ligeros (CML) con estructura de light steel frame, analizando el comportamiento térmico y acústico, así como también el coste económico de las mismas, con el objetivo de demostrar que este tipo de sistema constructivo es una alternativa competitiva a los sistemas de Cerramientos Tradicionales y, que a su vez se puedan implementar en cualquier sistema constructivo y se puedan adaptar a los distintos ambientes climáticos que existen en España. Por otro lado, se han seleccionado tres Cerramientos Tradicionales, para llevar a cabo las distintas comparativas propuestas. La investigación se desarrolla en cinco grandes partes: La primera parte está formada por la justificación de la investigación y el planteamiento de los objetivos, así como también la hipótesis de partida y la metodología empleada. En la segunda parte se definen los antecedentes teóricos, divididos en tres temas: el cerramiento ? la fachada, la transmisión del calor y la transmisión del sonido en los cerramientos. También se realiza una síntesis del trabajo de investigación previo que he realizado ?Caracterización del comportamiento térmico de fachadas multicapas ligeras?, el cual sirve de base de partida para el desarrollo de esta tesis. Y por último, se desarrollan distintos temas relacionados con el Light Steel Frame (LSF), en donde se lleva a cabo una búsqueda de la documentación disponible sobre las investigaciones científico-tecnológicas, desde distintos puntos de vista: térmico, acústico, económico, estructural, en caso de incendio, industrialización y medioambiental ? sostenibilidad. Una vez realizados todos los puntos anteriores y para sintetizar la información, se lleva a cabo una clasificación de los sistemas de cerramientos que tienen como estructura el light steel frame, se analizan las ventajas e inconvenientes de cada uno de estos sistemas de la clasificación, llegando a unas conclusiones que sirven de base para definir las propuestas de Cerramientos Multicapas Ligeros. En la tercera parte, se definen los tres cerramientos tradicionales que se utilizan para realizar las comparativas con los cerramientos multicapas ligeros, definiendo las características de cada uno de los materiales y, también se desarrollan los criterios de diseño que deben cumplir los cerramientos multicapas ligeros, definiendo cada una de las tres muestras de ensayo de cerramientos multicapas ligeros. En la cuarta parte se lleva a cabo el análisis teórico ? experimental de las seis muestras de estudio, en donde, se realiza una investigación térmica basada en simulaciones y experimentaciones en células de ensayo e implementación de la termografía infrarroja. Por otro lado, se realiza también una investigación acústica desarrollando ensayos en laboratorio de aislamiento a ruido aéreo e intensimetría sonora. Y por último, se hace un análisis económico, tomando en cuenta las variables del coste de construcción, el consumo energético, el ahorro que supone la masa a la estructura y el espacio adicional que aporta este tipo de sistema constructivo a la superficie útil, para ello se plantean distintos escenarios de estudio. Una vez obtenidos los resultados de las diferentes investigaciones (térmica, acústica y económica), se llevan a cabo una serie de comparativas entre los cerramientos multicapas ligeros y los cerramientos tradicionales, y los cerramientos multicapas ligeros entre sí. En la quinta parte, se exponen las conclusiones derivadas de las distintas investigaciones y se realiza la comprobación de los objetivos propuestos y de la hipótesis de partida, destacando los hallazgos principales para cada situación y se presentan las líneas futuras de investigación que han ido surgiendo en el desarrollo de la tesis doctoral.
Resumo:
Esta comunicación tiene como fundamento el demostrar la importancia de las singularidades geométricas para la resolución de sistemas que impliquen condiciones peculiares de contorno. No es necesario a estas alturas, romper ninguna lanza a favor de los métodos numéricos de discretización del contorno para el tratamiento de problemas frente a los métodos de discretización del dominio. Con todo, el simple hecho de ser un procedimiento numérico conlleva ciertas peculiaridades o problemas de difícil soslayo, pero también pueden presentar serias ventajas basadas en los fundamentos del método. En esta comunicación se pretende hacer constancia no solo de la importancia de este método, palpablemente demostrada en las referencias consignadas, sino algunas de las ventajas que puede proporcionar la resolución de problemas que impliquen potencial, como por ejemplo la transmisión de calor en régimen permanente, y que han sido demostradas para problemas de filtraciones por ejemplo, puestos de manifiesto en este artículo.
Resumo:
Indoor multpropagation channel is modeled by the Kaiser electromagnetic wavelet. A method for channel characterization is proposed by modeling all the reflections of indoor propagation in a kernel function instead of its impulse response. This led us to consider a fractal modulation scheme in which Kaiser wavelets substitute the traditional sinusoidal carrier.
Resumo:
La Calorimetría Diferencial de Barrido es una técnica de análisis térmico, usada desde hace décadas, para medir la entalpía asociada al cambio de fase de un material como función del tiempo y de la temperatura. Otras técnicas menos utilizadas son la Calorimetría Convencional el Análisis Térmico Diferencial. Existe una gran incertidumbre en los valores de propiedades suministrados por los fabricantes (puesto que éstos se refieren a las sustancias puras) y es conveniente utilizar DSC para tener valores más exactos. Se va a analizar la capacidad de almacenamiento térmico en función de la temperatura de varios materiales compuestos formados por los mismos agregados -principalmente yeso y material de cambio de fase- en distintas proporciones. Los valores obtenidos se comparan con otros materiales constructivos, yeso laminado y ladrillo. También se verifica la idoneidad del nuevo material constructivo para el almacenamiento de energía térmica frente a otros materiales utilizados tradicionalmente para este fin.
Resumo:
En esta investigación se ha diseñado y fabricado un panel de escayola que incorpora un 45% en peso de material de cambio de fase, manteniendo las propiedades físicas y mecánicas exigidas en la normativa de aplicación para yesos de construcción (UNE EN 13279 y referencias a la RY 85). Así, un panel de 1,0 m2 y 1,5 cm de espesor, contiene 4,75 kg de PCM, cantidad muy superior a la conseguida hasta la fecha (3 kg/m2). Para ello se ha mejorado previamente sus prestaciones mecánicas y físicas mediante adiciones binarias: fibras de polipropileno y dispersión de melanina formaldehído. Este porcentaje es capaz de almacenar en 1,5 cm de espesor cinco veces la energía térmica de un panel de cartón yeso con el mismo espesor y la misma cantidad que una fábrica de 1/2 pie de ladrillo hueco, en el rango de temperaturas próximas a la de confort (20-30 ºC)
Resumo:
La protección de proteínas frente a la degradación ruminal mediante el tratamiento sucesivo con soluciones ácidas y calor se ha demostrado como un método eficaz para aumentar el valor proteico de alimentos muy degradables como la harina de girasol (Arroyo y González, 2009). En este trabajo se ha pretendido comprobar la eficacia de este tratamiento en otro alimento altamente degradable como es el guisante de primavera.
Resumo:
En las décadas de 1950 y 1960, pese a las aparentes dificultades de comunicación con el exterior, la arquitectura española miró hacia fuera constantemente. La potencia de la arquitectura moderna latinoamericana, junto a las diferencias instrumentales y geográficas, la hacían difícilmente importable a un contexto materialmente escaso y excesivamente tradicional. Sin embargo, dicha producción interesó y se difundió notablemente durante ambas décadas. Este artículo pretende varias cosas a la vez. Por una parte, proporcionar una panorámica global sobre difusión de la arquitectura latinoamericana fuera de su continente. Para ello nos serviremos básicamente del que probablemente fue el medio más potente con el que contaron: las revistas especializadas de arquitectura. Pero también pretende ser una llamada de atención hacia las publicaciones periódicas españolas, mucho menos conocidas que otras europeas pero, sin embargo, repletas de buena arquitectura.