13 resultados para termination of contract mining concession
em Universidad Politécnica de Madrid
Resumo:
Acquired brain injury (ABI) is one of the leading causes of death and disability in the world and is associated with high health care costs as a result of the acute treatment and long term rehabilitation involved. Different algorithms and methods have been proposed to predict the effectiveness of rehabilitation programs. In general, research has focused on predicting the overall improvement of patients with ABI. The purpose of this study is the novel application of data mining (DM) techniques to predict the outcomes of cognitive rehabilitation in patients with ABI. We generate three predictive models that allow us to obtain new knowledge to evaluate and improve the effectiveness of the cognitive rehabilitation process. Decision tree (DT), multilayer perceptron (MLP) and general regression neural network (GRNN) have been used to construct the prediction models. 10-fold cross validation was carried out in order to test the algorithms, using the Institut Guttmann Neurorehabilitation Hospital (IG) patients database. Performance of the models was tested through specificity, sensitivity and accuracy analysis and confusion matrix analysis. The experimental results obtained by DT are clearly superior with a prediction average accuracy of 90.38%, while MLP and GRRN obtained a 78.7% and 75.96%, respectively. This study allows to increase the knowledge about the contributing factors of an ABI patient recovery and to estimate treatment efficacy in individual patients.
Resumo:
Nowadays, processing Industry Sector is going through a series of changes, including right management and reduction of environmental affections. Any productive process which looks for sustainable management is incomplete if Cycle of Life of mineral resources sustainability is not taken into account. Raw materials for manufacturing are provided by mineral resources extraction processes, such as copper, aluminum, iron, gold, silver, silicon, titanium? Those elements are necessary for Mankind development and are obtained from the Earth through mineral extractive processes. Mineral extraction processes are operations which must take care about the environmental consequences. Extraction of huge volumes of rock for their transformation into raw materials for industry must be optimized to reduce ecological cost of the final product as l was possible. Reducing the ecological balance on a global scale has no sense to design an efficient manufacturing in secondary industry (transformation), if in first steps of the supply chain (extraction) impact exceeds the savings of resources in successive phases. Mining operations size suggests that it is an environmental aggressive activity, but precisely because of its great impact must be the first element to be considered. That idea implies that a new concept born: Reduce economical and environmental cost This work aims to make a reflection on the parameters that can be modified to reduce the energy cost of the process without an increasing in operational costs and always ensuring the same production capacity. That means minimize economic and environmental cost at same time. An efficient design of mining operation which has taken into account that idea does not implies an increasing of the operating cost. To get this objective is necessary to think in global operation view to make that all departments involved have common guidelines which make you think in the optimization of global energy costs. Sometimes a single operational cost must be increased to reduce global cost. This work makes a review through different design parameters of surface mining setting some key performance indicators (KPIs) which are estimated from an efficient point of view. Those KPIs can be included by HQE Policies as global indicators. The new concept developed is that a new criteria has to be applied in company policies: improve management, improving OPERATIONAL efficiency. That means, that is better to use current resources properly (machinery, equipment,?) than to replace them with new things but not used correctly. As a conclusion, through an efficient management of current technologies in each extractive operation an important reduction of the energy can be achieved looking at downstream in the process. That implies a lower energetic cost in the whole cycle of life in manufactured product.
Resumo:
The inner oval dome of the Basílica de la Virgen los Desamparados, built in 1701, is one of the most slender masonry vaults ever built. It is a tile dome with a total thickness of 80 mm and a main span of 18.50 m. It was built without centering with great ingenuity and economy of means, thirty three years after the termination of the building in 1667. The dome is in contact with the external dome only in the inferior part with the projecting ribs of the intrados, the lunettes of the windows, and, in the upper part, through 126 inclined iron bars. This unique construction was revealed in the 1990's in the studies previous to the restoration of the Basílica, and has given rise to different theories about the mode of construction and the structural behaviour and safety of the dome. The present contribution aims to provide a plausible hypothesis about the mode of construction and to explain the safety of the inner dome which has stood, without need of repairs or reinforcement, for 300 hundred years.
Resumo:
Abstract Due to recent scientific and technological advances in information sys¬tems, it is now possible to perform almost every application on a mobile device. The need to make sense of such devices more intelligent opens an opportunity to design data mining algorithm that are able to autonomous execute in local devices to provide the device with knowledge. The problem behind autonomous mining deals with the proper configuration of the algorithm to produce the most appropriate results. Contextual information together with resource information of the device have a strong impact on both the feasibility of a particu¬lar execution and on the production of the proper patterns. On the other hand, performance of the algorithm expressed in terms of efficacy and efficiency highly depends on the features of the dataset to be analyzed together with values of the parameters of a particular implementation of an algorithm. However, few existing approaches deal with autonomous configuration of data mining algorithms and in any case they do not deal with contextual or resources information. Both issues are of particular significance, in particular for social net¬works application. In fact, the widespread use of social networks and consequently the amount of information shared have made the need of modeling context in social application a priority. Also the resource consumption has a crucial role in such platforms as the users are using social networks mainly on their mobile devices. This PhD thesis addresses the aforementioned open issues, focusing on i) Analyzing the behavior of algorithms, ii) mapping contextual and resources information to find the most appropriate configuration iii) applying the model for the case of a social recommender. Four main contributions are presented: - The EE-Model: is able to predict the behavior of a data mining algorithm in terms of resource consumed and accuracy of the mining model it will obtain. - The SC-Mapper: maps a situation defined by the context and resource state to a data mining configuration. - SOMAR: is a social activity (event and informal ongoings) recommender for mobile devices. - D-SOMAR: is an evolution of SOMAR which incorporates the configurator in order to provide updated recommendations. Finally, the experimental validation of the proposed contributions using synthetic and real datasets allows us to achieve the objectives and answer the research questions proposed for this dissertation.
Resumo:
In this position paper, we claim that the need for time consuming data preparation and result interpretation tasks in knowledge discovery, as well as for costly expert consultation and consensus building activities required for ontology building can be reduced through exploiting the interplay of data mining and ontology engineering. The aim is to obtain in a semi-automatic way new knowledge from distributed data sources that can be used for inference and reasoning, as well as to guide the extraction of further knowledge from these data sources. The proposed approach is based on the creation of a novel knowledge discovery method relying on the combination, through an iterative ?feedbackloop?, of (a) data mining techniques to make emerge implicit models from data and (b) pattern-based ontology engineering to capture these models in reusable, conceptual and inferable artefacts.
Resumo:
La actividad minera tiene un gran impacto sobre el territorio, probablemente más que ninguna otra de las actividades humanas, ya que transforma el espacio en todas sus dimensiones: ecológica, ambiental, social y económica. Cuando la reducción de la rentabilidad de la explotación conduce al cierre de ésta, la repercusión sobre su entorno puede llegar a ser brutal. Pero las explotaciones mineras son muy distintas entre ellas y los efectos que su abandono producen sobre el espacio en la que se enclavan pueden ser diversos, por lo que la decisión sobre el futuro de estas áreas no es simple y evidente. Aquí se propone desarrollar una propuesta de clasificación tipológica de las minas y sus regiones con el objetivo de determinar las estrategias de intervención más adecuadas para el futuro de estos espacios y sus habitantes. En concreto se busca diferenciar los conceptos de Mina, Parque Minero, Espacio Minero y Región Minera, todos ellos fruto de la interacción de la huella de la actividad minera con el medio físico, los enclaves urbanizados, y la estructura socioeconómica de la región en la que se enclavan. Mining activity is having a great impact on the territory, probably more than any other human activity, which transforms the space in all of its dimensions, ecological, environmental, social and economic. When reducing the profitability of the operation leads to the conclusion thereof, the impact on the environment can be brutal. But mining are very different between them and the effects they produce on their abandonment in space that interlock can be diverse, so the decision on the future of these areas is not simple and obvious. This proposal aims to develop a typological classification of mines and their regions in order to determine the most appropriate intervention strategies for the future of these spaces and their inhabitants. Specifically, it seeks to differentiate the concepts of Mine, Mining Park, Space Miner and Mining Region, all the result of the interaction of the mining footprint with the physical environment, the urbanized enclaves, and the socio-economic structure of the region which interlock. El presente libro reúne las ponencias presentadas por los investigadores de la red REUSE dentro del 1er Simposio de Reutilización del Espacio Minero; evento organizado por la Universidad Federal de Minas Gerais (UFMG) en Belo Horizonte, entre el 1 y el 3 de octubre de 2012, en el marco del 1er Seminario Internacional de Reconversión de Territorios. La red REUSE es una red realizada gracias a la financiación del programa CYTED
Resumo:
La gestión de estériles de una explotación minera es un punto clave en el desarrollo económico de una actividad extractiva, y en especial, del entorno natural y social en el que se emplaza dicho proyecto. La minería de metales preciosos lleva asociada la construcción de balsas de residuos muy peligrosos, fruto de su proceso extractivo, como por ejemplo la cianuración en el caso del oro. Para un correcto funcionamiento de dichos emplazamientos es necesario escoger correctamente el método constructivo a partir de estudios de reconocimiento previos, como estudios de estabilidad geotécnica, contexto geológico de la zona, sismicidad, hidrología, etc. Así mismo, han de llevarse a cabo unas exhaustivas medidas de control y vigilancia para asegurar las condiciones de seguridad exigidas. La ruptura de la balsa de decantación de Aurul S.A. en Baia Mare (Rumania) el 30 de Enero del año 2000 ha sido escogido como caso de estudio de estabilidad de diques. ABSTRACT Tailing's management of a mining exploitation is a key point in the economical development of the extractive activity and, especially, of the natural and social environment of the site. Precious metals mining has high hazardous embankment construction associated, product of its extractive process, i.e. gold cyanidation. A correct operation of those sites makes necessary to choose a suitable construction method, based on previous studies as geotechnical stability studies, geological context of the area, seismicity, hydrology, etc. At the same time, exhaustive control and monitoring must be carried out in order to assure the required safety conditions. Aurul's decantation pond failure in Baia Mare (Romania), on 30th January 2000, has been chosen as a stability analysis case-study.
Resumo:
El mercado de outsourcing ha estado creciendo en los últimos años y se prevé que lo siga haciendo en los próximos, pero este crecimiento ha estado limitado por el fracaso de muchos proyectos que, en algunos casos, han llevado a las organizaciones a asumir de nuevo esos servicios (insourcing). Estos fracasos se han debido en gran parte a los problemas con los proveedores: falta de experiencia, de capacidades para asumir los proyectos, dificultad en la comunicación,… A diferencia de lo que ocurre en otras disciplinas, no existe una metodología que ayude, tanto a los clientes como a los proveedores de servicios de outsourcing de TI, a gobernar y gestionar sus proyectos y conseguir los resultados buscados. En los últimos años han aparecido, al mismo tiempo que la expansión del outsourcing, algunos modelos y marcos de buenas prácticas para la gestión de los proyectos de outsourcing, pero generalmente sólo cubren algunos aspectos de la gestión. No se los puede considerar metodologías, porque no definen roles, responsabilidades ni entregables. Por lo general, son el resultado de la experiencia en la gestión de otros tipos de proyectos. Hay que considerar también que, excepto eSCM-SP, que es un modelo de buenas prácticas para mejorar la capacidad en la provisión de servicios, están todos orientados al cliente. El objetivo de esta tesis es, por un lado, demostrar la necesidad de contar con una metodología que guíe a los proveedores durante todo el ciclo de vida un proyecto de outsourcing y, por otro, proponer una metodología que contemple desde la fase inicial de la búsqueda de oportunidades de negocio, evaluación de las propuestas RFP, la decisión de hacer una oferta o no para la prestación de servicios, la participación en la due diligence, la firma del contrato, la transición y la entrega de servicios, hasta la finalización del contrato. La metodología se ha organizado en base a un ciclo de vida del outsourcing de cinco etapas, definiendo para cada una de ellas los roles que participan y las responsabilidades que deberán asumir, las actividades a realizar y los entregables que se deberán generar, y que servirán de elementos de control tanto para la gestión del proyecto como para la provisión del servicio. La validación de la metodología se ha realizado aplicándola en proyectos de provisión de servicios de TI de una mediana empresa española y comparando los resultados obtenidos con los conseguidos en proyectos anteriores. ABSTRACT The outsourcing market has been growing in recent years and it is expected to keep doing so in the coming years, but this growth has been limited by the failure of many projects that, in some cases, has led organizations to take back those services (insourcing). These failures have been due to a major degree to problems with providers: lack of experience and capacity to take on the projects, and difficulties of communication. Unlike what happens in other disciplines, there is no methodology for helping both customers and providers of outsourcing services. In recent years, some good practice frameworks have also appeared at the same time as the expansion of outsourcing. They are not methodologies because they have not defined any roles, responsibilities and deliverables. These frameworks aim to help organizations to be successful at managing and governing outsourcing projects. They are usually the result of their experience in managing other kinds of projects. In consequence, it is not appropriate to name them "methodologies" for managing outsourcing projects and much less "standards". It is also important to note that all existing good practice frameworks, except eSCM-SP, are client-oriented. The aim of this thesis is to state the need to propose a methodology that guides providers throughout the whole outsourcing life cycle and facilitates the provision of quality services and their management, and the proposal of a methodology in which the stages, activities, deliverables, roles and responsibilities are clearly defined. The proposed methodology cover all the stages of the outsourcing life cycle, from the early stage of searching for business opportunities, evaluation of the RFP proposals, the decision to bid or not to bid for the service provision, participation in the due diligence if necessary, the signing of the contract, the transition and delivery of service to the termination of the contract. For each activity, roles, responsibilities and deliverables have been defined. The validation of the methodology has been done by applying it in the provision of some outsourcing projects carried out by a Spanish IT medium company and comparing the results with those obtained in previous projects.
Resumo:
Este proyecto tiene por objeto el estudio de la viabilidad, tanto económica como técnica, de la explotación de una cantera de calizas pertenecientes a la formación geológica Calizas del Páramo. El yacimiento explotado es de tipo superficial, con una profundidad media entre 30 y 35 m. La concesión de explotación se localiza en la subcomarca de la Alcarria de Alcalá, al sureste de la Comunidad de Madrid. La caliza extraída es utilizada para fabricación de cemento, micronizados y pinturas, utilizándose el subproducto como árido en diferentes materiales de la construcción, como fabricación de hormigones, aglomerados asfálticos, sub-base para carreteras, caminos y otros usos similares. Desde el punto de vista técnico, la explotación se realiza a cielo abierto por el método de banqueo descendente en profundidad y restauración progresiva, mediante arranque por perforación y voladura, y posterior carga y transporte de materiales por medios mecánicos. El Proyecto de Explotación plantea la extracción de un volumen total de material del orden de 32,85 Mt. Atendiendo a la cifra de reservas explotables y al ritmo de producción anual previsto, el período de explotación contemplado en este Proyecto es del orden de 30 años desde la situación actual. El estudio realizado de los indicadores económicos nos muestra que el proyecto es rentable, con todo ello, parece concluirse que, tanto técnica como económicamente, la explotación es viable. ABSTRACT This project aims to study the economic and technical feasibility for the operation of a limestone quarry belonging to the geological formation of the Calizas del Páramo. The reservoir exploited is superficial type, with an average depth between 30 and 35 m. The mining concession is located in the subregion of the Alcarria de Alcalá, southeast of Madrid. The extracted limestone is used for manufacturing cement, micronized and paintings, using the product as aggregate in different construction materials, such as manufacture of concrete, asphalt mixes, sub-base for roads, paths and other similar uses. From the technical point of view, the operation will be held openpit by the method of depth descending benching and progressive restoration. The operation begins by drilling and blasting, continuing with loading and transport of materials by mechanical methods. The Exploitation Project raises the extraction of a total volume of material of 32.85 Mt approximately Considering the number of exploitable reserves and expected annual production rate, the operating period referred to in this project is of the order of 30 years from the current situation. The study of economic indicators shows that the project is profitable, yet it can be concluded that, both technically and economically, the exploitation of mineral resources is viable.
Resumo:
Advanced composite materials are increasingly used in the strengthening of reinforced concrete (RC) structures. The use of externally bonded strips made of fibre-reinforced plastics (FRP) as strengthening method has gained widespread acceptance in recent years since it has many advantages over the traditional techniques. However, unfortunately, this strengthening method is often associated with a brittle and sudden failure caused by some form of FRP bond failure, originated at the termination of the FRP material or at intermediate areas in the vicinity of flexural cracks in the RC beam. Up to date, little effort in the early prediction of the debonding in its initial instants even though this effect is not noticeable by simple visual observation. An early detection of this phenomenon might help in taking actions to prevent future catastrophes. Fibre-optic Bragg grating (FBG) sensors are able to measure strains locally with high resolution and accuracy. Furthermore, as their physical size is extremely small compared with other strain measuring components, it enables to be embedded at the concrete-FRP interface for determining the strain distribution without influencing the mechanical properties of the host materials. This paper shows the development of a debonding identification methodology based on strains experimentally measured. For, it a simplified model is implemented to simulate the behaviour of FRP-strengthened reinforced concrete beams. This model is taken as a basis to. develop an model updating procedure able to detect minor debonding at the concrete-FRP interface from experimental strains obtained by using FBG sensors embedded at the interface
Resumo:
La predicción del valor de las acciones en la bolsa de valores ha sido un tema importante en el campo de inversiones, que por varios años ha atraído tanto a académicos como a inversionistas. Esto supone que la información disponible en el pasado de la compañía que cotiza en bolsa tiene alguna implicación en el futuro del valor de la misma. Este trabajo está enfocado en ayudar a un persona u organismo que decida invertir en la bolsa de valores a través de gestión de compra o venta de acciones de una compañía a tomar decisiones respecto al tiempo de comprar o vender basado en el conocimiento obtenido de los valores históricos de las acciones de una compañía en la bolsa de valores. Esta decisión será inferida a partir de un modelo de regresión múltiple que es una de las técnicas de datamining. Para llevar conseguir esto se emplea una metodología conocida como CRISP-DM aplicada a los datos históricos de la compañía con mayor valor actual del NASDAQ.---ABSTRACT---The prediction of the value of shares in the stock market has been a major issue in the field of investments, which for several years has attracted both academics and investors. This means that the information available in the company last traded have any involvement in the future of the value of it. This work is focused on helping an investor decides to invest in the stock market through management buy or sell shares of a company to make decisions with respect to time to buy or sell based on the knowledge gained from the historic values of the shares of a company in the stock market. This decision will be inferred from a multiple regression model which is one of the techniques of data mining. To get this out a methodology known as CRISP-DM applied to historical data of the company with the highest current value of NASDAQ is used.
Resumo:
La diabetes mellitus es un trastorno en la metabolización de los carbohidratos, caracterizado por la nula o insuficiente segregación de insulina (hormona producida por el páncreas), como resultado del mal funcionamiento de la parte endocrina del páncreas, o de una creciente resistencia del organismo a esta hormona. Esto implica, que tras el proceso digestivo, los alimentos que ingerimos se transforman en otros compuestos químicos más pequeños mediante los tejidos exocrinos. La ausencia o poca efectividad de esta hormona polipéptida, no permite metabolizar los carbohidratos ingeridos provocando dos consecuencias: Aumento de la concentración de glucosa en sangre, ya que las células no pueden metabolizarla; consumo de ácidos grasos mediante el hígado, liberando cuerpos cetónicos para aportar la energía a las células. Esta situación expone al enfermo crónico, a una concentración de glucosa en sangre muy elevada, denominado hiperglucemia, la cual puede producir a medio o largo múltiples problemas médicos: oftalmológicos, renales, cardiovasculares, cerebrovasculares, neurológicos… La diabetes representa un gran problema de salud pública y es la enfermedad más común en los países desarrollados por varios factores como la obesidad, la vida sedentaria, que facilitan la aparición de esta enfermedad. Mediante el presente proyecto trabajaremos con los datos de experimentación clínica de pacientes con diabetes de tipo 1, enfermedad autoinmune en la que son destruidas las células beta del páncreas (productoras de insulina) resultando necesaria la administración de insulina exógena. Dicho esto, el paciente con diabetes tipo 1 deberá seguir un tratamiento con insulina administrada por la vía subcutánea, adaptado a sus necesidades metabólicas y a sus hábitos de vida. Para abordar esta situación de regulación del control metabólico del enfermo, mediante una terapia de insulina, no serviremos del proyecto “Páncreas Endocrino Artificial” (PEA), el cual consta de una bomba de infusión de insulina, un sensor continuo de glucosa, y un algoritmo de control en lazo cerrado. El objetivo principal del PEA es aportar al paciente precisión, eficacia y seguridad en cuanto a la normalización del control glucémico y reducción del riesgo de hipoglucemias. El PEA se instala mediante vía subcutánea, por lo que, el retardo introducido por la acción de la insulina, el retardo de la medida de glucosa, así como los errores introducidos por los sensores continuos de glucosa cuando, se descalibran dificultando el empleo de un algoritmo de control. Llegados a este punto debemos modelar la glucosa del paciente mediante sistemas predictivos. Un modelo, es todo aquel elemento que nos permita predecir el comportamiento de un sistema mediante la introducción de variables de entrada. De este modo lo que conseguimos, es una predicción de los estados futuros en los que se puede encontrar la glucosa del paciente, sirviéndonos de variables de entrada de insulina, ingesta y glucosa ya conocidas, por ser las sucedidas con anterioridad en el tiempo. Cuando empleamos el predictor de glucosa, utilizando parámetros obtenidos en tiempo real, el controlador es capaz de indicar el nivel futuro de la glucosa para la toma de decisones del controlador CL. Los predictores que se están empleando actualmente en el PEA no están funcionando correctamente por la cantidad de información y variables que debe de manejar. Data Mining, también referenciado como Descubrimiento del Conocimiento en Bases de Datos (Knowledge Discovery in Databases o KDD), ha sido definida como el proceso de extracción no trivial de información implícita, previamente desconocida y potencialmente útil. Todo ello, sirviéndonos las siguientes fases del proceso de extracción del conocimiento: selección de datos, pre-procesado, transformación, minería de datos, interpretación de los resultados, evaluación y obtención del conocimiento. Con todo este proceso buscamos generar un único modelo insulina glucosa que se ajuste de forma individual a cada paciente y sea capaz, al mismo tiempo, de predecir los estados futuros glucosa con cálculos en tiempo real, a través de unos parámetros introducidos. Este trabajo busca extraer la información contenida en una base de datos de pacientes diabéticos tipo 1 obtenidos a partir de la experimentación clínica. Para ello emplearemos técnicas de Data Mining. Para la consecución del objetivo implícito a este proyecto hemos procedido a implementar una interfaz gráfica que nos guía a través del proceso del KDD (con información gráfica y estadística) de cada punto del proceso. En lo que respecta a la parte de la minería de datos, nos hemos servido de la denominada herramienta de WEKA, en la que a través de Java controlamos todas sus funciones, para implementarlas por medio del programa creado. Otorgando finalmente, una mayor potencialidad al proyecto con la posibilidad de implementar el servicio de los dispositivos Android por la potencial capacidad de portar el código. Mediante estos dispositivos y lo expuesto en el proyecto se podrían implementar o incluso crear nuevas aplicaciones novedosas y muy útiles para este campo. Como conclusión del proyecto, y tras un exhaustivo análisis de los resultados obtenidos, podemos apreciar como logramos obtener el modelo insulina-glucosa de cada paciente. ABSTRACT. The diabetes mellitus is a metabolic disorder, characterized by the low or none insulin production (a hormone produced by the pancreas), as a result of the malfunctioning of the endocrine pancreas part or by an increasing resistance of the organism to this hormone. This implies that, after the digestive process, the food we consume is transformed into smaller chemical compounds, through the exocrine tissues. The absence or limited effectiveness of this polypeptide hormone, does not allow to metabolize the ingested carbohydrates provoking two consequences: Increase of the glucose concentration in blood, as the cells are unable to metabolize it; fatty acid intake through the liver, releasing ketone bodies to provide energy to the cells. This situation exposes the chronic patient to high blood glucose levels, named hyperglycemia, which may cause in the medium or long term multiple medical problems: ophthalmological, renal, cardiovascular, cerebrum-vascular, neurological … The diabetes represents a great public health problem and is the most common disease in the developed countries, by several factors such as the obesity or sedentary life, which facilitate the appearance of this disease. Through this project we will work with clinical experimentation data of patients with diabetes of type 1, autoimmune disease in which beta cells of the pancreas (producers of insulin) are destroyed resulting necessary the exogenous insulin administration. That said, the patient with diabetes type 1 will have to follow a treatment with insulin, administered by the subcutaneous route, adapted to his metabolic needs and to his life habits. To deal with this situation of metabolic control regulation of the patient, through an insulin therapy, we shall be using the “Endocrine Artificial Pancreas " (PEA), which consists of a bomb of insulin infusion, a constant glucose sensor, and a control algorithm in closed bow. The principal aim of the PEA is providing the patient precision, efficiency and safety regarding the normalization of the glycemic control and hypoglycemia risk reduction". The PEA establishes through subcutaneous route, consequently, the delay introduced by the insulin action, the delay of the glucose measure, as well as the mistakes introduced by the constant glucose sensors when, decalibrate, impede the employment of an algorithm of control. At this stage we must shape the patient glucose levels through predictive systems. A model is all that element or set of elements which will allow us to predict the behavior of a system by introducing input variables. Thus what we obtain, is a prediction of the future stages in which it is possible to find the patient glucose level, being served of input insulin, ingestion and glucose variables already known, for being the ones happened previously in the time. When we use the glucose predictor, using obtained real time parameters, the controller is capable of indicating the future level of the glucose for the decision capture CL controller. The predictors that are being used nowadays in the PEA are not working correctly for the amount of information and variables that it need to handle. Data Mining, also indexed as Knowledge Discovery in Databases or KDD, has been defined as the not trivial extraction process of implicit information, previously unknown and potentially useful. All this, using the following phases of the knowledge extraction process: selection of information, pre- processing, transformation, data mining, results interpretation, evaluation and knowledge acquisition. With all this process we seek to generate the unique insulin glucose model that adjusts individually and in a personalized way for each patient form and being capable, at the same time, of predicting the future conditions with real time calculations, across few input parameters. This project of end of grade seeks to extract the information contained in a database of type 1 diabetics patients, obtained from clinical experimentation. For it, we will use technologies of Data Mining. For the attainment of the aim implicit to this project we have proceeded to implement a graphical interface that will guide us across the process of the KDD (with graphical and statistical information) of every point of the process. Regarding the data mining part, we have been served by a tool called WEKA's tool called, in which across Java, we control all of its functions to implement them by means of the created program. Finally granting a higher potential to the project with the possibility of implementing the service for Android devices, porting the code. Through these devices and what has been exposed in the project they might help or even create new and very useful applications for this field. As a conclusion of the project, and after an exhaustive analysis of the obtained results, we can show how we achieve to obtain the insulin–glucose model for each patient.
Resumo:
La gran cantidad de datos que se registran diariamente en los sistemas de base de datos de las organizaciones ha generado la necesidad de analizarla. Sin embargo, se enfrentan a la complejidad de procesar enormes volúmenes de datos a través de métodos tradicionales de análisis. Además, dentro de un contexto globalizado y competitivo las organizaciones se mantienen en la búsqueda constante de mejorar sus procesos, para lo cual requieren herramientas que les permitan tomar mejores decisiones. Esto implica estar mejor informado y conocer su historia digital para describir sus procesos y poder anticipar (predecir) eventos no previstos. Estos nuevos requerimientos de análisis de datos ha motivado el desarrollo creciente de proyectos de minería de datos. El proceso de minería de datos busca obtener desde un conjunto masivo de datos, modelos que permitan describir los datos o predecir nuevas instancias en el conjunto. Implica etapas de: preparación de los datos, procesamiento parcial o totalmente automatizado para identificar modelos en los datos, para luego obtener como salida patrones, relaciones o reglas. Esta salida debe significar un nuevo conocimiento para la organización, útil y comprensible para los usuarios finales, y que pueda ser integrado a los procesos para apoyar la toma de decisiones. Sin embargo, la mayor dificultad es justamente lograr que el analista de datos, que interviene en todo este proceso, pueda identificar modelos lo cual es una tarea compleja y muchas veces requiere de la experiencia, no sólo del analista de datos, sino que también del experto en el dominio del problema. Una forma de apoyar el análisis de datos, modelos y patrones es a través de su representación visual, utilizando las capacidades de percepción visual del ser humano, la cual puede detectar patrones con mayor facilidad. Bajo este enfoque, la visualización ha sido utilizada en minería datos, mayormente en el análisis descriptivo de los datos (entrada) y en la presentación de los patrones (salida), dejando limitado este paradigma para el análisis de modelos. El presente documento describe el desarrollo de la Tesis Doctoral denominada “Nuevos Esquemas de Visualizaciones para Mejorar la Comprensibilidad de Modelos de Data Mining”. Esta investigación busca aportar con un enfoque de visualización para apoyar la comprensión de modelos minería de datos, para esto propone la metáfora de modelos visualmente aumentados. ABSTRACT The large amount of data to be recorded daily in the systems database of organizations has generated the need to analyze it. However, faced with the complexity of processing huge volumes of data over traditional methods of analysis. Moreover, in a globalized and competitive environment organizations are kept constantly looking to improve their processes, which require tools that allow them to make better decisions. This involves being bettered informed and knows your digital story to describe its processes and to anticipate (predict) unanticipated events. These new requirements of data analysis, has led to the increasing development of data-mining projects. The data-mining process seeks to obtain from a massive data set, models to describe the data or predict new instances in the set. It involves steps of data preparation, partially or fully automated processing to identify patterns in the data, and then get output patterns, relationships or rules. This output must mean new knowledge for the organization, useful and understandable for end users, and can be integrated into the process to support decision-making. However, the biggest challenge is just getting the data analyst involved in this process, which can identify models is complex and often requires experience not only of the data analyst, but also the expert in the problem domain. One way to support the analysis of the data, models and patterns, is through its visual representation, i.e., using the capabilities of human visual perception, which can detect patterns easily in any context. Under this approach, the visualization has been used in data mining, mostly in exploratory data analysis (input) and the presentation of the patterns (output), leaving limited this paradigm for analyzing models. This document describes the development of the doctoral thesis entitled "New Visualizations Schemes to Improve Understandability of Data-Mining Models". This research aims to provide a visualization approach to support understanding of data mining models for this proposed metaphor visually enhanced models.