8 resultados para temporal and spatial changes
em Universidad Politécnica de Madrid
Resumo:
The crop simulation model AquaCrop, recently developed by FAO can be used for a wide range of purposes. However, in its present form, its use over large areas or for applications that require a large number of simulations runs (e.g., long-term analysis), is not practical without developing software to facilitate such applications. Two tools for managing the inputs and outputs of AquaCrop, named AquaData and AquaGIS, have been developed for this purpose and are presented here. Both software utilities have been programmed in Delphi v. 5 and in addition, AquaGIS requires the Geographic Information System (GIS) programming tool MapObjects. These utilities allow the efficient management of input and output files, along with a GIS module to develop spatial analysis and effect spatial visualization of the results, facilitating knowledge dissemination. A sample of application of the utilities is given here, as an AquaCrop simulation analysis of impact of climate change on wheat yield in Southern Spain, which requires extensive input data preparation and output processing. The use of AquaCrop without the two utilities would have required approximately 1000 h of work, while the utilization of AquaData and AquaGIS reduced that time by more than 99%. Furthermore, the use of GIS, made it possible to perform a spatial analysis of the results, thus providing a new option to extend the use of the AquaCrop model to scales requiring spatial and temporal analyses.
Resumo:
The overall objective of this research project is to enrich geographic data with temporal and semantic components in order to significantly improve spatio-temporal analysis of geographic phenomena. To achieve this goal, we intend to establish and incorporate three new layers (structures) into the core of the Geographic Information by using mark-up languages as well as defining a set of methods and tools for enriching the system to make it able to retrieve and exploit such layers (semantic-temporal, geosemantic, and incremental spatio-temporal). Besides these layers, we also propose a set of models (temporal and spatial) and two semantic engines that make the most of the enriched geographic data. The roots of the project and its definition have been previously presented in Siabato & Manso-Callejo 2011. In this new position paper, we extend such work by delineating clearly the methodology and the foundations on which we will base to define the main components of this research: the spatial model, the temporal model, the semantic layers, and the semantic engines. By putting together the former paper and this new work we try to present a comprehensive description of the whole process, from pinpointing the basic problem to describing and assessing the solution. In this new article we just mention the methods and the background to describe how we intend to define the components and integrate them into the GI.
Resumo:
The first wall armour for the reactor chamber of HiPER will have to face short energy pulses of 5 to 20 MJ mostly in the form of x-rays and charged particles at a repetition rate of 5–10 Hz. Armour material and chamber dimensions have to be chosen to avoid/minimize damage to the chamber, ensuring the proper functioning of the facility during its planned lifetime. The maximum energy fluence that the armour can withstand without risk of failure, is determined by temporal and spatial deposition of the radiation energy inside the material. In this paper, simulations on the thermal effect of the radiation–armour interaction are carried out with an increasing definition of the temporal and spatial deposition of energy to prove their influence on the final results. These calculations will lead us to present the first values of the thermo-mechanical behaviour of the tungsten armour designed for the HiPER project under a shock ignition target of 48 MJ. The results will show that only the crossing of the plasticity limit in the first few micrometres might be a threat after thousands of shots for the survivability of the armour.
Resumo:
This poster raises the issue of a research work oriented to the storage, retrieval, representation and analysis of dynamic GI, taking into account The ultimate objective is the modelling and representation of the dynamic nature of geographic features, establishing mechanisms to store geometries enriched with a temporal structure (regardless of space) and a set of semantic descriptors detailing and clarifying the nature of the represented features and their temporality. the semantic, the temporal and the spatiotemporal components. We intend to define a set of methods, rules and restrictions for the adequate integration of these components into the primary elements of the GI: theme, location, time [1]. We intend to establish and incorporate three new structures (layers) into the core of data storage by using mark-up languages: a semantictemporal structure, a geosemantic structure, and an incremental spatiotemporal structure. Thus, data would be provided with the capability of pinpointing and expressing their own basic and temporal characteristics, enabling them to interact each other according to their context, and their time and meaning relationships that could be eventually established
Resumo:
The present contribution discusses the development of a PSE-3D instability analysis algorithm, in which a matrix forming and storing approach is followed. Alternatively to the typically used in stability calculations spectral methods, new stable high-order finitedifference-based numerical schemes for spatial discretization 1 are employed. Attention is paid to the issue of efficiency, which is critical for the success of the overall algorithm. To this end, use is made of a parallelizable sparse matrix linear algebra package which takes advantage of the sparsity offered by the finite-difference scheme and, as expected, is shown to perform substantially more efficiently than when spectral collocation methods are used. The building blocks of the algorithm have been implemented and extensively validated, focusing on classic PSE analysis of instability on the flow-plate boundary layer, temporal and spatial BiGlobal EVP solutions (the latter necessary for the initialization of the PSE-3D), as well as standard PSE in a cylindrical coordinates using the nonparallel Batchelor vortex basic flow model, such that comparisons between PSE and PSE-3D be possible; excellent agreement is shown in all aforementioned comparisons. Finally, the linear PSE-3D instability analysis is applied to a fully three-dimensional flow composed of a counter-rotating pair of nonparallel Batchelor vortices.
Resumo:
Urban areas benefit from significant improvements in accessibility when a new high speed rail (HSR) project is built. These improvements, which are due mainly to a rise in efficiency, produce locational advantagesand increase the attractiveness of these cities, thereby possibly enhancing their competitivenessand economic growth. However, there may be equity issues at stake, as the main accessibility benefits are primarily concentrated in urban areas with a HSR station, whereas other locations obtain only limited benefits. HSR extensions may contribute to an increase in spatial imbalance and lead to more polarized patterns of spatial development. Procedures for assessing the spatial impacts of HSR must therefore follow a twofold approach which addresses issues of both efficiency and equity. This analysis can be made by jointly assessing both the magnitude and distribution of the accessibility improvements deriving from a HSR project. This paper describes an assessment methodology for HSR projects which follows this twofold approach. The procedure uses spatial impact analysis techniques and is based on the computation of accessibility indicators, supported by a Geographical Information System (GIS). Efficiency impacts are assessed in terms of the improvements in accessibility resulting from the HSR project, with a focus on major urban areas; and spatial equity implications are derived from changes in the distribution of accessibility values among these urban agglomerations.
Resumo:
Landcover is subject to continuous changes on a wide variety of temporal and spatial scales. Those changes produce significant effects in human and natural activities. Maintaining an updated spatial database with the occurred changes allows a better monitoring of the Earth?s resources and management of the environment. Change detection (CD) techniques using images from different sensors, such as satellite imagery, aerial photographs, etc., have proven to be suitable and secure data sources from which updated information can be extracted efficiently, so that changes can also be inventoried and monitored. In this paper, a multisource CD methodology for multiresolution datasets is applied. First, different change indices are processed, then different thresholding algorithms for change/no_change are applied to these indices in order to better estimate the statistical parameters of these categories, finally the indices are integrated into a change detection multisource fusion process, which allows generating a single CD result from several combination of indices. This methodology has been applied to datasets with different spectral and spatial resolution properties. Then, the obtained results are evaluated by means of a quality control analysis, as well as with complementary graphical representations. The suggested methodology has also been proved efficiently for identifying the change detection index with the higher contribution.
Resumo:
Low-cost systems that can obtain a high-quality foreground segmentation almostindependently of the existing illumination conditions for indoor environments are verydesirable, especially for security and surveillance applications. In this paper, a novelforeground segmentation algorithm that uses only a Kinect depth sensor is proposedto satisfy the aforementioned system characteristics. This is achieved by combininga mixture of Gaussians-based background subtraction algorithm with a new Bayesiannetwork that robustly predicts the foreground/background regions between consecutivetime steps. The Bayesian network explicitly exploits the intrinsic characteristics ofthe depth data by means of two dynamic models that estimate the spatial and depthevolution of the foreground/background regions. The most remarkable contribution is thedepth-based dynamic model that predicts the changes in the foreground depth distributionbetween consecutive time steps. This is a key difference with regard to visible imagery,where the color/gray distribution of the foreground is typically assumed to be constant.Experiments carried out on two different depth-based databases demonstrate that theproposed combination of algorithms is able to obtain a more accurate segmentation of theforeground/background than other state-of-the art approaches.