3 resultados para occupation tailoring

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Software Product Line Engineering (SPLE) is becoming widely used due to the improvement it means when developing software products of the same family. However, SPLE demands long-term investment on a product-line platform that might not be profitable due to rapid changing business settings. Since Agile Software Development (ASD) approaches are being successfully applied in volatile markets, several companies have suggested the idea of integrating SPLE and ASD when a family product has to be developed. Agile Product Line Engineering (APLE) advocates the integration of SPLE and ASD to address their lacks when they are individually applied to software development. A previous literature re-view of experiences and practices on APLE revealed important challenges about how to fully put APLE into practice. Our contribution address several of these challenges by tailoring the agile method Scrum by means of three concepts that we have defined: plastic partial components, working PL-architectures, and reactive reuse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irradiation with swift heavy ions (SHI), roughly defined as those having atomic masses larger than 15 and energies exceeding 1 MeV/amu, may lead to significant modification of the irradiated material in a nanometric region around the (straight) ion trajectory (i.e., latent tracks). In the case of amorphous silica it has been reported that SHI irradiation originates nano-tracks of either higher density than the virgin material (for low electronic stopping powers, Se < 7 keV/nm) [1] or having a low-density core and a dense shell (Se > 12 keV/nm) [2]. The intermediate region has not been studied in detail but we will show in this work that essentially no changes in density occur in this zone. An interesting effect of the compaction is that the refractive index is increased with respect to that of the surroundings. In the first Se region it is clear that track overlapping leads to continuous amorphous layers that present a significant contrast with respect to the pristine substrate and this has been used to produce optical waveguides. The optical effects of intermediate and high stopping powers, on the other hand, are largely unknown so far. In this work we have studied theoretically (molecular dynamics and optical simulations) and experimentally (irradiation with SHI and optical characterization) the dependence of the macroscopic optical properties (i.e., the refractive index of the effective medium, n_EMA) on the electronic stopping power of the incoming ions. Our results show that the refractive index of the irradiated silica is not increased in the intermediate region, as expected; however, the core-shell tracks of the high-Se region produce a quite effective enhancement of n_EMA that could prove attractive for the fabrication of optical waveguides at ultralow fluences (as low as 1E11 cm^-2). 1. J. Manzano, J. Olivares, F. Agulló-López, M. L. Crespillo, A. Moroño, and E. Hodgson, "Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2)," Nucl. Instrum. Meth. B 268, 3147-3150 (2010). 2. P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, "Fine structure in swift heavy ion tracks in amorphous SiO2," Phys. Rev. Lett. 101, 175503 (2008).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the magnetic anisotropy and domain configuration of cosputtered TbFeGa alloys. The layers were deposited from two targets with compositions TbFe2 and Fe3Ga, respectively. The structural and magnetic properties do not only depend on the composition but also on the growth conditions. Alloys with the same composition but deposited using a DC or a pulsed power source in the TbFe2 target exhibit a different magnetic anisotropy. The perpendicular magnetic anisotropy, the size and topology of domain patterns can be tailored by changing the evaporation parameters of TbFe2. The width of the stripe domain increases from 235 to 835 nm when using the DC source in the TbFe2. We correlate this effect with Tb enrichment of the TbxFe1−x phases present in the samples.