12 resultados para metallization
em Universidad Politécnica de Madrid
Resumo:
AlGaN/GaN high electron mobility transistors (HEMT) are key devices for the next generation of high-power, high-frequency and high-temperature electronics applications. Although significant progress has been recently achieved [1], stability and reliability are still some of the main issues under investigation, particularly at high temperatures [2-3]. Taking into account that the gate contact metallization is one of the weakest points in AlGaN/GaN HEMTs, the reliability of Ni, Mo, Pt and refractory metal gates is crucial [4-6]. This work has been focused on the thermal stress and reliability assessment of AlGaN/GaN HEMTs. After an unbiased storage at 350 o C for 2000 hours, devices with Ni/Au gates exhibited detrimental IDS-VDS degradation in pulsed mode. In contrast, devices with Mo/Au gates showed no degradation after similar storage conditions. Further capacitance-voltage characterization as a function of temperature and frequency revealed two distinct trap-related effects in both kinds of devices. At low frequency (< 1MHz), increased capacitance near the threshold voltage was present at high temperatures and more pronounced for the Ni/Au gate HEMT and as the frequency is lower. Such an anomalous “bump” has been previously related to H-related surface polar charges [7]. This anomalous behavior in the C-V characteristics was also observed in Mo/Au gate HEMTs after 1000 h at a calculated channel temperatures of around from 250 o C (T2) up to 320 ºC (T4), under a DC bias (VDS= 25 V, IDS= 420 mA/mm) (DC-life test). The devices showed a higher “bump” as the channel temperature is higher (Fig. 1). At 1 MHz, the higher C-V curve slope of the Ni/Au gated HEMTs indicated higher trap density than Mo/Au metallization (Fig. 2). These results highlight that temperature is an acceleration factor in the device degradation, in good agreement with [3]. Interface state density analysis is being performed in order to estimate the trap density and activation energy.
Resumo:
Concentrator solar cell front-grid metallizations are designed so that the trade-off between series resistance and shading factor (SF) is optimized for a particular irradiance. High concentrator photovoltaics (CPV) typically requires a metallic electrode pattern that covers up to 10% of the cell surface. The shading effect produced by this front electrode results in a significant reduction in short-circuit current (I SC) and hence, in a significant efficiency loss. In this work we present a cover glass (originally meant to protect the cell surface) that is laser-grooved with a micrometric pattern that redirects the incident solar light towards interfinger regions and away from the metallic electrodes, where they would be wasted in terms of photovoltaic generation. Quantum efficiency (QE) and current (I)-voltage (V) characterization under concentration validate the proof-of-concept, showing great potential for CPV applications
Resumo:
A two-dimensional finite element model of current flow in the front surface of a PV cell is presented. In order to validate this model we perform an experimental test. Later, particular attention is paid to the effects of non-uniform illumination in the finger direction which is typical in a linear concentrator system. Fill factor, open circuit voltage and efficiency are shown to decrease with increasing degree of non-uniform illumination. It is shown that these detrimental effects can be mitigated significantly by reoptimization of the number of front surface metallization fingers to suit the degree of non-uniformity. The behavior of current flow in the front surface of a cell operating at open circuit voltage under non-uniform illumination is discussed in detail.
Resumo:
Indium nitride (InN) has been the subject of intense research in recent years. Some of its most attractive features are its excellent transport properties such as its small band edge electron effective mass, high electron mobilities and peak drift velocities, and high frequency transient drift velocity oscillations [1]. These suggest enormous potential applications for InN in high frequency electronic devices. But to date the high unintentional bulk electron concentration (n~1018 cm-3) of undoped InN samples and the surface electron accumulation layer make it a hard task to create a reliable metalsemiconductor Schottky barrier. Some attempts have been made to overcome this problem by means of material oxidation [2] or deposition of insulators [3]. In this work we present a way to obtain an electrical rectification behaviour by means of heterojunction growth. Due to the big band gap differences among nitride semiconductors, it’s possible to create a structure with high band offsets. In InN/GaN heterojunctions, depending on the GaN doping, the magnitude of conduction and valence band offset are critical parameters which allow distinguishing among different electrical behaviours. The earliest estimate of the valence band offset at an InN–GaN heterojunction in a wurtzite structure was measured to be ~0.85 eV [4], while the Schottky barrier heights were determined to be ~ 1,4 eV [5].We grew In-face InN layer with varying thickness (between 150 nm and 1 mm) by plasma assisted molecular beam epitaxy (PA-MBE) on GaNntemplates (GaN/Al2O3), with temperatures ranging between 300°C and 450°C. The different doping in GaN template (Si doping, Fe doping and Mg doping) results in differences in band alignments of the two semiconductors changing electrical barriers for carriers and consequently electrical conduction behaviour. The processing of the devices includes metallization of the ohmic contacts on InN and GaN, for which we used Ti/Al/Ni/Au. Whereas an ohmic contact on InN is straightforward, the main issue was the fabrication of the contact on GaN due to the very low decomposition temperature of InN. A standard ohmic contact on GaN is generally obtained by high temperature rapid thermal annealing (RTA), typically done between 500ºC and 900ºC[6]. In this case, the limitation due to the presence of In-face InN imposes an upper limit on the temperature for the thermal annealing process and ohmic contact formation of about 450°C. We will present results on the morphology of the InN layers by X-Ray diffraction and SEM, and electrical measurements, in particular current-voltage and capacitance-voltage characteristics.
Resumo:
En los últimos años la tecnología láser se ha convertido en una herramienta imprescindible en la fabricación de dispositivos fotovoltaicos, ayudando a la consecución de dos objetivos claves para que esta opción energética se convierta en una alternativa viable: reducción de costes de fabricación y aumento de eficiencia de dispositivo. Dentro de las tecnologías fotovoltaicas, las basadas en silicio cristalino (c-Si) siguen siendo las dominantes en el mercado, y en la actualidad los esfuerzos científicos en este campo se encaminan fundamentalmente a conseguir células de mayor eficiencia a un menor coste encontrándose, como se comentaba anteriormente, que gran parte de las soluciones pueden venir de la mano de una mayor utilización de tecnología láser en la fabricación de los mismos. En este contexto, esta Tesis hace un estudio completo y desarrolla, hasta su aplicación en dispositivo final, tres procesos láser específicos para la optimización de dispositivos fotovoltaicos de alta eficiencia basados en silicio. Dichos procesos tienen como finalidad la mejora de los contactos frontal y posterior de células fotovoltaicas basadas en c-Si con vistas a mejorar su eficiencia eléctrica y reducir el coste de producción de las mismas. En concreto, para el contacto frontal se han desarrollado soluciones innovadoras basadas en el empleo de tecnología láser en la metalización y en la fabricación de emisores selectivos puntuales basados en técnicas de dopado con láser, mientras que para el contacto posterior se ha trabajado en el desarrollo de procesos de contacto puntual con láser para la mejora de la pasivación del dispositivo. La consecución de dichos objetivos ha llevado aparejado el alcanzar una serie de hitos que se resumen continuación: - Entender el impacto de la interacción del láser con los distintos materiales empleados en el dispositivo y su influencia sobre las prestaciones del mismo, identificando los efectos dañinos e intentar mitigarlos en lo posible. - Desarrollar procesos láser que sean compatibles con los dispositivos que admiten poca afectación térmica en el proceso de fabricación (procesos a baja temperatura), como los dispositivos de heterounión. - Desarrollar de forma concreta procesos, completamente parametrizados, de definición de dopado selectivo con láser, contactos puntuales con láser y metalización mediante técnicas de transferencia de material inducida por láser. - Definir tales procesos de forma que reduzcan la complejidad de la fabricación del dispositivo y que sean de fácil integración en una línea de producción. - Mejorar las técnicas de caracterización empleadas para verificar la calidad de los procesos, para lo que ha sido necesario adaptar específicamente técnicas de caracterización de considerable complejidad. - Demostrar su viabilidad en dispositivo final. Como se detalla en el trabajo, la consecución de estos hitos en el marco de desarrollo de esta Tesis ha permitido contribuir a la fabricación de los primeros dispositivos fotovoltaicos en España que incorporan estos conceptos avanzados y, en el caso de la tecnología de dopado con láser, ha permitido hacer avances completamente novedosos a nivel mundial. Asimismo los conceptos propuestos de metalización con láser abren vías, completamente originales, para la mejora de los dispositivos considerados. Por último decir que este trabajo ha sido posible por una colaboración muy estrecha entre el Centro Láser de la UPM, en el que la autora desarrolla su labor, y el Grupo de Investigación en Micro y Nanotecnologías de la Universidad Politécnica de Cataluña, encargado de la preparación y puesta a punto de las muestras y del desarrollo de algunos procesos láser para comparación. También cabe destacar la contribución de del Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT, en la preparación de experimentos específicos de gran importancia en el desarrollo del trabajo. Dichas colaboraciones se han desarrollado en el marco de varios proyectos, tales como el proyecto singular estratégico PSE-MICROSIL08 (PSE-iv 120000-2006-6), el proyecto INNDISOL (IPT-420000-2010-6), ambos financiados por el Fondo Europeo de Desarrollo Regional FEDER (UE) “Una manera de hacer Europa” y el MICINN, y el proyecto del Plan Nacional AMIC (ENE2010-21384-C04-02), cuya financiación ha permitido en gran parte llevar a término este trabajo. v ABSTRACT. Last years lasers have become a fundamental tool in the photovoltaic (PV) industry, helping this technology to achieve two major goals: cost reduction and efficiency improvement. Among the present PV technologies, crystalline silicon (c-Si) maintains a clear market supremacy and, in this particular field, the technological efforts are focussing into the improvement of the device efficiency using different approaches (reducing for instance the electrical or optical losses in the device) and the cost reduction in the device fabrication (using less silicon in the final device or implementing more cost effective production steps). In both approaches lasers appear ideally suited tools to achieve the desired success. In this context, this work makes a comprehensive study and develops, until their implementation in a final device, three specific laser processes designed for the optimization of high efficiency PV devices based in c-Si. Those processes are intended to improve the front and back contact of the considered solar cells in order to reduce the production costs and to improve the device efficiency. In particular, to improve the front contact, this work has developed innovative solutions using lasers as fundamental processing tools to metalize, using laser induced forward transfer techniques, and to create local selective emitters by means of laser doping techniques. On the other side, and for the back contact, and approached based in the optimization of standard laser fired contact formation has been envisaged. To achieve these fundamental goals, a number of milestones have been reached in the development of this work, namely: - To understand the basics of the laser-matter interaction physics in the considered processes, in order to preserve the functionality of the irradiated materials. - To develop laser processes fully compatible with low temperature device concepts (as it is the case of heterojunction solar cells). - In particular, to parameterize completely processes of laser doping, laser fired contacts and metallization via laser transfer of material. - To define such a processes in such a way that their final industrial implementation could be a real option. - To improve widely used characterization techniques in order to be applied to the study of these particular processes. - To probe their viability in a final PV device. Finally, the achievement of these milestones has brought as a consequence the fabrication of the first devices in Spain incorporating these concepts. In particular, the developments achieved in laser doping, are relevant not only for the Spanish science but in a general international context, with the introduction of really innovative concepts as local selective emitters. Finally, the advances reached in the laser metallization approached presented in this work open the door to future developments, fully innovative, in the field of PV industrial metallization techniques. This work was made possible by a very close collaboration between the Laser Center of the UPM, in which the author develops his work, and the Research Group of Micro y Nanotecnology of the Universidad Politécnica de Cataluña, in charge of the preparation and development of samples and the assessment of some laser processes for comparison. As well is important to remark the collaboration of the Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT, in the preparation of specific experiments of great importance in the development of the work. These collaborations have been developed within the framework of various projects such as the PSE-MICROSIL08 (PSE-120000-2006-6), the project INNDISOL (IPT-420000-2010-6), both funded by the Fondo Europeo de Desarrollo Regional FEDER (UE) “Una manera de hacer Europa” and the MICINN, and the project AMIC (ENE2010-21384-C04-02), whose funding has largely allowed to complete this work.
Resumo:
Laser processing has been the tool of choice last years to develop improved concepts in contact formation for high efficiency crystalline silicon (c-Si) solar cells. New concepts based on standard laser fired contacts (LFC) or advanced laser doping (LD) techniques are optimal solutions for both the front and back contacts of a number of structures with growing interest in the c-Si PV industry. Nowadays, substantial efforts are underway to optimize these processes in order to be applied industrially in high efficiency concepts. However a critical issue in these devices is that, most of them, demand a very low thermal input during the fabrication sequence and a minimal damage of the structure during the laser irradiation process. Keeping these two objectives in mind, in this work we discuss the possibility of using laser-based processes to contact the rear side of silicon heterojunction (SHJ) solar cells in an approach fully compatible with the low temperature processing associated to these devices. First we discuss the possibility of using standard LFC techniques in the fabrication of SHJ cells on p-type substrates, studying in detail the effect of the laser wavelength on the contact quality. Secondly, we present an alternative strategy bearing in mind that a real challenge in the rear contact formation is to reduce the damage induced by the laser irradiation. This new approach is based on local laser doping techniques previously developed by our groups, to contact the rear side of p-type c-Si solar cells by means of laser processing before rear metallization of dielectric stacks containing Al2O3. In this work we demonstrate the possibility of using this new approach in SHJ cells with a distinct advantage over other standard LFC techniques.
Resumo:
La óptica anidólica es una rama de la óptica cuyo desarrollo comenzó a mediados de la década de 1960. Este relativamente nuevo campo de la óptica se centra en la transferencia eficiente de la luz, algo necesario en muchas aplicaciones, entre las que destacamos los concentradores solares y los sistemas de iluminación. Las soluciones de la óptica clásica a los problemas de la transferencia de energía de la luz sólo son adecuadas cuando los rayos de luz son paraxiales. La condición paraxial no se cumple en la mayoría de las aplicaciones para concentración e iluminación. Esta tesis contiene varios diseños free-form (aquellos que no presentan ninguna simetría, ni de rotación ni lineal) cuyas aplicaciones van destinadas a estos dos campos. El término nonimaging viene del hecho de que estos sistemas ópticos no necesitan formar una imagen del objeto, aunque no formar la imagen no es una condición necesaria. Otra palabra que se utiliza a veces en lugar de nonimaging es la palabra anidólico, viene del griego "an+eidolon" y tiene el mismo significado. La mayoría de los sistemas ópticos diseñados para aplicaciones anidólicas no presentan ninguna simetría, es decir, son free-form (anamórficos). Los sistemas ópticos free-form están siendo especialmente relevantes durante los últimos años gracias al desarrollo de las herramientas para su fabricación como máquinas de moldeo por inyección y el mecanizado multieje. Sin embargo, solo recientemente se han desarrollado técnicas de diseño anidólicas capaces de cumplir con estos grados de libertad. En aplicaciones de iluminación el método SMS3D permite diseñar dos superficies free-form para controlar las fuentes de luz extensas. En los casos en que se requiere una elevada asimetría de la fuente, el objeto o las restricciones volumétricos, las superficies free-form permiten obtener soluciones de mayor eficiencia, o disponer de menos elementos en comparación con las soluciones de simetría de rotación, dado que las superficies free-form tienen más grados de libertad y pueden realizar múltiples funciones debido a su naturaleza anamórfica. Los concentradores anidólicos son muy adecuados para la captación de energía solar, ya que el objetivo no es la reproducción de una imagen exacta del sol, sino sencillamente la captura de su energía. En este momento, el campo de la concentración fotovoltaica (CPV) tiende hacia sistemas de alta concentración con el fin de compensar el gasto de las células solares multi-unión (MJ) utilizadas como receptores, reduciendo su área. El interés en el uso de células MJ radica en su alta eficiencia de conversión. Para obtener sistemas competitivos en aplicaciones terrestres se recurre a sistemas fotovoltaicos de alta concentración (HCPV), con factores de concentración geométrica por encima de 500x. Estos sistemas se componen de dos (o más) elementos ópticos (espejos y/o lentes). En los sistemas presentados a lo largo de este trabajo se presentan ejemplos de concentradores HCPV con elementos reflexivos como etapa primaria, así como concentradores con elementos refractivos (lente de Fresnel). Con la necesidad de aumentar la eficiencia de los sistemas HCPV reales y con el fin de proporcionar la división más eficiente del espectro solar, células conteniendo cuatro o más uniones (con un potencial de alcanzar eficiencias de más del 45% a una concentración de cientos de soles) se exploran hoy en día. En esta tesis se presenta una de las posibles arquitecturas de división del espectro (spectrum-splitting en la literatura anglosajona) que utilizan células de concentración comercial. Otro campo de aplicación de la óptica nonimaging es la iluminación, donde es necesario proporcionar un patrón de distribución de la iluminación específico. La iluminación de estado sólido (SSL), basada en la electroluminiscencia de materiales semiconductores, está proporcionando fuentes de luz para aplicaciones de iluminación general. En la última década, los diodos emisores de luz (LED) de alto brillo han comenzado a reemplazar a las fuentes de luz convencionales debido a la superioridad en la calidad de la luz emitida, elevado tiempo de vida, compacidad y ahorro de energía. Los colimadores utilizados con LEDs deben cumplir con requisitos tales como tener una alta eficiencia, un alto control del haz de luz, una mezcla de color espacial y una gran compacidad. Presentamos un colimador de luz free-form con microestructuras capaz de conseguir buena colimación y buena mezcla de colores con una fuente de LED RGGB. Una buena mezcla de luz es importante no sólo para simplificar el diseño óptico de la luminaria sino también para evitar hacer binning de los chips. La mezcla de luz óptica puede reducir los costes al evitar la modulación por ancho de pulso y otras soluciones electrónicas patentadas para regulación y ajuste de color. Esta tesis consta de cuatro capítulos. Los capítulos que contienen la obra original de esta tesis son precedidos por un capítulo introductorio donde se presentan los conceptos y definiciones básicas de la óptica geométrica y en el cual se engloba la óptica nonimaging. Contiene principios de la óptica no formadora de imagen junto con la descripción de sus problemas y métodos de diseño. Asimismo se describe el método de Superficies Múltiples Simultáneas (SMS), que destaca por su versatilidad y capacidad de controlar varios haces de rayos. Adicionalmente también se describe la integración Köhler y sus aplicaciones en el campo de la energía fotovoltaica. La concentración fotovoltaica y la iluminación de estado sólido son introducidas junto con la revisión de su estado actual. El Segundo y Tercer Capítulo contienen diseños ópticos avanzados con aplicación en la concentración solar principalmente, mientras que el Cuarto Capítulo describe el colimador free-form con surcos que presenta buena mezcla de colores para aplicaciones de iluminación. El Segundo Capítulo describe dos concentradores ópticos HCPV diseñados con el método SMS en tres dimensiones (SMS3D) que llevan a cabo integración Köhler en dos direcciones con el fin de proporcionar una distribución de irradiancia uniforme libre de aberraciones cromáticas sobre la célula solar. Uno de los diseños es el concentrador XXR free-form diseñado con el método SMS3D, donde el espejo primario (X) y la lente secundaria (R) se dividen en cuatro sectores simétricos y llevan a cabo la integración Köhler (proporcionando cuatro unidades del array Köhler), mientras que el espejo intermedio (X) presenta simetría rotacional. Otro concentrador HCPV presentado es el Fresnel-RXI (FRXI) con una lente de Fresnel funcionando como elemento primario (POE) y una lente RXI como elemento óptico secundario (SOE), que presenta configuración 4-fold con el fin de realizar la integración Köhler. Las lentes RXI son dispositivos nonimaging conocidos, pero su aplicación como elemento secundario es novedosa. Los concentradores XXR y FRXI Köhler son ejemplos académicos de muy alta concentración (más de 2,000x, mientras que los sistemas convencionales hoy en día no suelen llegar a 1,000x) preparados para las células solares N-unión (con N>3), que probablemente requerirán una mayor concentración y alta uniformidad espectral de irradiancia con el fin de obtener sistemas CPV terrestres eficientes y rentables. Ambos concentradores están diseñados maximizando funciones de mérito como la eficiencia óptica, el producto concentración-aceptancia (CAP) y la uniformidad de irradiancia sobre la célula libre de la aberración cromática (integración Köhler). El Tercer Capítulo presenta una arquitectura para la división del espectro solar basada en un módulo HCPV con alta concentración (500x) y ángulo de aceptancia alto (>1º) que tiene por objeto reducir ambas fuentes de pérdidas de las células triple unión (3J) comerciales: el uso eficiente del espectro solar y la luz reflejada de los contactos metálicos y de la superficie de semiconductor. El módulo para la división del espectro utiliza el espectro solar más eficiente debido a la combinación de una alta eficiencia de una célula de concentración 3J (GaInP/GaInAs/Ge) y una de contacto posterior (BPC) de concentración de silicio (Si), así como la técnica de confinamiento externo para la recuperación de la luz reflejada por la célula 3J con el fin de ser reabsorbida por la célula. En la arquitectura propuesta, la célula 3J opera con su ganancia de corriente optimizada (concentración geométrica de 500x), mientras que la célula de silicio trabaja cerca de su óptimo también (135x). El módulo de spectrum-splitting consta de una lente de Fresnel plana como POE y un concentrador RXI free-form como SOE con un filtro paso-banda integrado en él. Tanto POE como SOE realizan la integración Köhler para producir homogeneización de luz sobre la célula. El filtro paso banda envía los fotones IR en la banda 900-1,150nm a la célula de silicio. Hay varios aspectos prácticos de la arquitectura del módulo presentado que ayudan a reducir la complejidad de los sistemas spectrum-splitting (el filtro y el secundario forman una sola pieza sólida, ambas células son coplanarias simplificándose el cableado y la disipación de calor, etc.). Prototipos prueba-de-concepto han sido ensamblados y probados a fin de demostrar la fabricabilidad del filtro y su rendimiento cuando se combina con la técnica de reciclaje de luz externa. Los resultados obtenidos se ajustan bastante bien a los modelos y a las simulaciones e invitan al desarrollo de una versión más compleja de este prototipo en el futuro. Dos colimadores sólidos con surcos free-form se presentan en el Cuarto Capítulo. Ambos diseños ópticos están diseñados originalmente usando el método SMS3D. La segunda superficie ópticamente activa está diseñada a posteriori como una superficie con surcos. El diseño inicial de dos espejos (XX) está diseñado como prueba de concepto. En segundo lugar, el diseño RXI free-form es comparable con los colimadores RXI existentes. Se trata de un diseño muy compacto y eficiente que proporciona una muy buena mezcla de colores cuando funciona con LEDs RGB fuera del eje óptico como en los RGB LEDs convencionales. Estos dos diseños son dispositivos free-form diseñados con la intención de mejorar las propiedades de mezcla de colores de los dispositivos no aplanáticos RXI con simetría de revolución y la eficiencia de los aplanáticos, logrando una buena colimación y una buena mezcla de colores. La capacidad de mezcla de colores del dispositivo no-aplanático mejora añadiendo características de un aplanático a su homólogo simétrico sin pérdida de eficiencia. En el caso del diseño basado en RXI, su gran ventaja consiste en su menor coste de fabricación ya que el proceso de metalización puede evitarse. Aunque algunos de los componentes presentan formas muy complejas, los costes de fabricación son relativamente insensibles a la complejidad del molde, especialmente en el caso de la producción en masa (tales como inyección de plástico), ya que el coste del molde se reparte entre todas las piezas fabricadas. Por último, las últimas dos secciones son las conclusiones y futuras líneas de investigación. ABSTRACT Nonimaging optics is a branch of optics whose development began in the mid-1960s. This rather new field of optics focuses on the efficient light transfer necessary in many applications, among which we highlight solar concentrators and illumination systems. The classical optics solutions to the problems of light energy transfer are only appropriate when the light rays are paraxial. The paraxial condition is not met in most applications for the concentration and illumination. This thesis explores several free-form designs (with neither rotational nor linear symmetry) whose applications are intended to cover the above mentioned areas and more. The term nonimaging comes from the fact that these optical systems do not need to form an image of the object, although it is not a necessary condition not to form an image. Another word sometimes used instead of nonimaging is anidolic, and it comes from the Greek “an+eidolon” and has the same meaning. Most of the optical systems designed for nonimaging applications are without any symmetry, i.e. free-form. Free-form optical systems become especially relevant lately with the evolution of free-form tooling (injection molding machines, multi-axis machining techniques, etc.). Nevertheless, only recently there are nonimaging design techniques that are able to meet these degrees of freedom. In illumination applications, the SMS3D method allows designing two free-form surfaces to control very well extended sources. In cases when source, target or volumetric constrains have very asymmetric requirements free-form surfaces are offering solutions with higher efficiency or with fewer elements in comparison with rotationally symmetric solutions, as free-forms have more degrees of freedom and they can perform multiple functions due to their free-form nature. Anidolic concentrators are well suited for the collection of solar energy, because the goal is not the reproduction of an exact image of the sun, but instead the collection of its energy. At this time, Concentration Photovoltaics (CPV) field is turning to high concentration systems in order to compensate the expense of multi-junction (MJ) solar cells used as receivers by reducing its area. Interest in the use of MJ cells lies in their very high conversion efficiency. High Concentration Photovoltaic systems (HCPV) with geometric concentration of more than 500x are required in order to have competitive systems in terrestrial applications. These systems comprise two (or more) optical elements, mirrors and/or lenses. Systems presented in this thesis encompass both main types of HCPV architectures: concentrators with primary reflective element and concentrators with primary refractive element (Fresnel lens). Demand for the efficiency increase of the actual HCPV systems as well as feasible more efficient partitioning of the solar spectrum, leads to exploration of four or more junction solar cells or submodules. They have a potential of reaching over 45% efficiency at concentration of hundreds of suns. One possible architectures of spectrum splitting module using commercial concentration cells is presented in this thesis. Another field of application of nonimaging optics is illumination, where a specific illuminance distribution pattern is required. The Solid State Lighting (SSL) based on semiconductor electroluminescence provides light sources for general illumination applications. In the last decade high-brightness Light Emitting Diodes (LEDs) started replacing conventional light sources due to their superior output light quality, unsurpassed lifetime, compactness and energy savings. Collimators used with LEDs have to meet requirements like high efficiency, high beam control, color and position mixing, as well as a high compactness. We present a free-form collimator with microstructures that performs good collimation and good color mixing with RGGB LED source. Good light mixing is important not only for simplifying luminaire optical design but also for avoiding die binning. Optical light mixing may reduce costs by avoiding pulse-width modulation and other patented electronic solutions for dimming and color tuning. This thesis comprises four chapters. Chapters containing the original work of this thesis are preceded by the introductory chapter that addresses basic concepts and definitions of geometrical optics on which nonimaging is developed. It contains fundamentals of nonimaging optics together with the description of its design problems, principles and methods, and with the Simultaneous Multiple Surface (SMS) method standing out for its versatility and ability to control several bundles of rays. Köhler integration and its applications in the field of photovoltaics are described as well. CPV and SSL fields are introduced together with the review on their background and their current status. Chapter 2 and Chapter 3 contain advanced optical designs with primarily application in solar concentration; meanwhile Chapter 4 portrays the free-form V-groove collimator with good color mixing property for illumination application. Chapter 2 describes two HCPV optical concentrators designed with the SMS method in three dimensions (SMS3D). Both concentrators represent Köhler integrator arrays that provide uniform irradiance distribution free from chromatic aberrations on the solar cell. One of the systems is the XXR free-form concentrator designed with the SMS3D method. The primary mirror (X) of this concentrator and secondary lens (R) are divided in four symmetric sectors (folds) that perform Köhler integration; meanwhile the intermediate mirror (X) is rotationally symmetric. Second HCPV concentrator is the Fresnel-RXI (FRXI) with flat Fresnel lens as the Primary Optical Element (POE) and an RXI lens as the Secondary Optical Element (SOE). This architecture manifests 4-fold configuration for performing Köhler integration (4 array units), as well. The RXI lenses are well-known nonimaging devices, but their application as SOE is novel. Both XXR and FRXI Köhler HCPV concentrators are academic examples of very high concentration (more than 2,000x meanwhile conventional systems nowadays have up to 1,000x) prepared for the near future N-junction (N>3) solar cells. In order to have efficient and cost-effective terrestrial CPV systems, those cells will probably require higher concentrations and high spectral irradiance uniformity. Both concentrators are designed by maximizing merit functions: the optical efficiency, concentration-acceptance angle (CAP) and cell-irradiance uniformity free from chromatic aberrations (Köhler integration). Chapter 3 presents the spectrum splitting architecture based on a HCPV module with high concentration (500x) and high acceptance angle (>1º). This module aims to reduce both sources of losses of the actual commercial triple-junction (3J) solar cells with more efficient use of the solar spectrum and with recovering the light reflected from the 3J cells’ grid lines and semiconductor surface. The solar spectrum is used more efficiently due to the combination of a high efficiency 3J concentration cell (GaInP/GaInAs/Ge) and external Back-Point-Contact (BPC) concentration silicon (Si) cell. By employing external confinement techniques, the 3J cell’s reflections are recovered in order to be re-absorbed by the cell. In the proposed concentrator architecture, the 3J cell operates at its optimized current gain (at geometrical concentration of 500x), while the Si cell works near its optimum, as well (135x). The spectrum splitting module consists of a flat Fresnel lens (as the POE), and a free-form RXI-type concentrator with a band-pass filter embedded in it (as the SOE), both POE and SOE performing Köhler integration to produce light homogenization. The band-pass filter sends the IR photons in the 900-1,150nm band to the Si cell. There are several practical aspects of presented module architecture that help reducing the added complexity of the beam splitting systems: the filter and secondary are forming a single solid piece, both cells are coplanar so the heat management and wiring is simplified, etc. Two proof-of-concept prototypes are assembled and tested in order to prove filter manufacturability and performance, as well as the potential of external light recycling technique. Obtained measurement results agree quite well with models and simulations, and show an opened path to manufacturing of the Fresnel RXI-type secondary concentrator with spectrum splitting strategy. Two free-form solid V-groove collimators are presented in Chapter 4. Both free-form collimators are originally designed with the SMS3D method. The second mirrored optically active surface is converted in a grooved surface a posteriori. Initial two mirror (XX) design is presented as a proof-of-concept. Second, RXI free-form design is comparable with existing RXI collimators as it is a highly compact and a highly efficient design. It performs very good color mixing of the RGGB LED sources placed off-axis like in conventional RGB LEDs. Collimators described here improve color mixing property of the prior art rotationally symmetric no-aplanatic RXI devices, and the efficiency of the aplanatic ones, accomplishing both good collimation and good color mixing. Free-form V-groove collimators enhance the no-aplanatic device's blending capabilities by adding aplanatic features to its symmetric counterpart with no loss in efficiency. Big advantage of the RXI design is its potentially lower manufacturing cost, since the process of metallization may be avoided. Although some components are very complicated for shaping, the manufacturing costs are relatively insensitive to the complexity of the mold especially in the case of mass production (such as plastic injection), as the cost of the mold is spread in many parts. Finally, last two sections are conclusions and future lines of investigation.
Resumo:
Solid State Lasers (SSL) have been used in microelectronic and photovoltaic (PV) industry for decades but, currently, laser technology appears as a key enabling technology to improve efficiency and to reduce production costs in high efficiency solar cells fabrication. Moreover, the fact that the interaction between the laser radiation and the device is normally localized and restricted to a controlled volume makes SSL a tool of choice for the implementation of low temperature concepts in PV industry. Specifically, SSL are ideally suited to improve the electrical performance of the contacts further improving the efficiency of these devices. Advanced concepts based on standard laser firing or advanced laser doping techniques are optimal solutions for the back contact of a significant number of structures of growing interest in the c-Si PV industry, and a number of solutions has been proposed as well for emitter formation, to reduce the metallization optical losses or even to remove completely the contacts from the front part of the cell. In this work we present our more recent results of SSL applications for contact optimization in c-Si solar cell technology, including applications on low temperature processes demanding devices, like heterojunction solar cells.
Resumo:
In this work the failure analysis carried out in III-V concentrator multijunction solar cells after a temperature accelerated life test is presented. All the failures appeared have been catastrophic since all the solar cells turned into low shunt resistances. A case study in failure analysis based on characterization by optical microscope, SEM, EDX, EQE and XPS is presented in this paper, revealing metal deterioration in the bus bar and fingers as well as cracks in the semiconductor structure beneath or next to the bus bar. In fact, in regions far from the bus bar the semiconductor structure seems not to be damaged. SEM images have dismissed the presence of metal spikes inside the solar cell structure. Therefore, we think that for these particular solar cells, failures appear mainly as a consequence of a deficient electrolytic growth of the front metallization which also results in failures in the semiconductor structure close to the bus bars.
Resumo:
The main objective of this work is to adapt the Laser Induced Forward Techniques (LIFT), a well- known laser direct writing technique for material transfer, to define metallic contacts (fingers and busbars) onto c-Si cells. The silver paste (with viscosity around 30-50 kcPs) is applied over a glass substrate using a coater. The thickness of the paste can be control changing the deposit parameters. The glass with the silver paste is set at a controlled gap over the c-Si cell. A solid state pulsed laser (532 nm) is focused at the glass/silver interface producing a droplet of silver that it is transferred to the c-Si cell. A scanner is used to print lines. The process parameters (silver paste thickness, gap and laser parameters -spot size, pulse energy and overlapping of pulses) are modified and the morphology of the lines is studied using confocal microscopy. Long lines are printed and the uniformity (in thickness and height) is studied. Some examples of metallization of larger areas (up to 10 cm x 10 cm) are presented.
Resumo:
El diseño de una antena reflectarray bajo la aproximación de periodicidad local requiere la determinación de la matriz de scattering de estructuras multicapa con metalizaciones periódicas para un gran número de geometrías diferentes. Por lo tanto, a la hora de diseñar antenas reflectarray en tiempos de CPU razonables, se necesitan herramientas númericas rápidas y precisas para el análisis de las estructuras periódicas multicapa. En esta tesis se aplica la versión Galerkin del Método de los Momentos (MDM) en el dominio espectral al análisis de las estructuras periódicas multicapa necesarias para el diseño de antenas reflectarray basadas en parches apilados o en dipolos paralelos coplanares. Desgraciadamente, la aplicación de este método numérico involucra el cálculo de series dobles infinitas, y mientras que algunas series convergen muy rápidamente, otras lo hacen muy lentamente. Para aliviar este problema, en esta tesis se propone un novedoso MDM espectral-espacial para el análisis de las estructuras periódicas multicapa, en el cual las series rápidamente convergente se calculan en el dominio espectral, y las series lentamente convergentes se calculan en el dominio espacial mediante una versión mejorada de la formulación de ecuaciones integrales de potenciales mixtos (EIPM) del MDM. Esta versión mejorada se basa en la interpolación eficiente de las funciones de Green multicapa periódicas, y en el cálculo eficiente de las integrales singulares que conducen a los elementos de la matriz del MDM. El novedoso método híbrido espectral-espacial y el tradicional MDM en el dominio espectral se han comparado en el caso de los elementos reflectarray basado en parches apilados. Las simulaciones numéricas han demostrado que el tiempo de CPU requerido por el MDM híbrido es alrededor de unas 60 veces más rápido que el requerido por el tradicional MDM en el dominio espectral para una precisión de dos cifras significativas. El uso combinado de elementos reflectarray con parches apilados y técnicas de optimización de banda ancha ha hecho posible diseñar antenas reflectarray de transmisiónrecepción (Tx-Rx) y polarización dual para aplicaciones de espacio con requisitos muy restrictivos. Desgraciadamente, el nivel de aislamiento entre las polarizaciones ortogonales en antenas DBS (típicamente 30 dB) es demasiado exigente para ser conseguido con las antenas basadas en parches apilados. Además, el uso de elementos reflectarray con parches apilados conlleva procesos de fabricación complejos y costosos. En esta tesis se investigan varias configuraciones de elementos reflectarray basadas en conjuntos de dipolos paralelos con el fin de superar los inconvenientes que presenta el elemento basado en parches apilados. Primeramente, se propone un elemento consistente en dos conjuntos apilados ortogonales de tres dipolos paralelos para aplicaciones de polarización dual. Se ha diseñado, fabricado y medido una antena basada en este elemento, y los resultados obtenidos para la antena indican que tiene unas altas prestaciones en términos de ancho de banda, pérdidas, eficiencia y discriminación contrapolar, además de requerir un proceso de fabricación mucho más sencillo que el de las antenas basadas en tres parches apilados. Desgraciadamente, el elemento basado en dos conjuntos ortogonales de tres dipolos paralelos no proporciona suficientes grados de libertad para diseñar antenas reflectarray de transmisión-recepción (Tx-Rx) de polarización dual para aplicaciones de espacio por medio de técnicas de optimización de banda ancha. Por este motivo, en la tesis se propone un nuevo elemento reflectarray que proporciona los grados de libertad suficientes para cada polarización. El nuevo elemento consiste en dos conjuntos ortogonales de cuatro dipolos paralelos. Cada conjunto contiene tres dipolos coplanares y un dipolo apilado. Para poder acomodar los dos conjuntos de dipolos en una sola celda de la antena reflectarray, el conjunto de dipolos de una polarización está desplazado medio período con respecto al conjunto de dipolos de la otra polarización. Este hecho permite usar solamente dos niveles de metalización para cada elemento de la antena, lo cual simplifica el proceso de fabricación como en el caso del elemento basados en dos conjuntos de tres dipolos paralelos coplanares. Una antena de doble polarización y doble banda (Tx-Rx) basada en el nuevo elemento ha sido diseñada, fabricada y medida. La antena muestra muy buenas presentaciones en las dos bandas de frecuencia con muy bajos niveles de polarización cruzada. Simulaciones numéricas presentadas en la tesis muestran que estos bajos de niveles de polarización cruzada se pueden reducir todavía más si se llevan a cabo pequeñas rotaciones de los dos conjuntos de dipolos asociados a cada polarización. ABSTRACT The design of a reflectarray antenna under the local periodicity assumption requires the determination of the scattering matrix of a multilayered structure with periodic metallizations for quite a large number of different geometries. Therefore, in order to design reflectarray antennas within reasonable CPU times, fast and accurate numerical tools for the analysis of the periodic multilayered structures are required. In this thesis the Galerkin’s version of the Method of Moments (MoM) in the spectral domain is applied to the analysis of the periodic multilayered structures involved in the design of reflectarray antennas made of either stacked patches or coplanar parallel dipoles. Unfortunately, this numerical approach involves the computation of double infinite summations, and whereas some of these summations converge very fast, some others converge very slowly. In order to alleviate this problem, in the thesis a novel hybrid MoM spectral-spatial domain approach is proposed for the analysis of the periodic multilayered structures. In the novel approach, whereas the fast convergent summations are computed in the spectral domain, the slowly convergent summations are computed by means of an enhanced Mixed Potential Integral Equation (MPIE) formulation of the MoM in the spatial domain. This enhanced formulation is based on the efficient interpolation of the multilayered periodic Green’s functions, and on the efficient computation of the singular integrals leading to the MoM matrix entries. The novel hybrid spectral-spatial MoM code and the standard spectral domain MoM code have both been compared in the case of reflectarray elements based on multilayered stacked patches. Numerical simulations have shown that the CPU time required by the hybrid MoM is around 60 times smaller than that required by the standard spectral MoM for an accuracy of two significant figures. The combined use of reflectarray elements based on stacked patches and wideband optimization techniques has made it possible to design dual polarization transmit-receive (Tx-Rx) reflectarrays for space applications with stringent requirements. Unfortunately, the required level of isolation between orthogonal polarizations in DBS antennas (typically 30 dB) is hard to achieve with the configuration of stacked patches. Moreover, the use of reflectarrays based on stacked patches leads to a complex and expensive manufacturing process. In this thesis, we investigate several configurations of reflectarray elements based on sets of parallel dipoles that try to overcome the drawbacks introduced by the element based on stacked patches. First, an element based on two stacked orthogonal sets of three coplanar parallel dipoles is proposed for dual polarization applications. An antenna made of this element has been designed, manufactured and measured, and the results obtained show that the antenna presents a high performance in terms of bandwidth, losses, efficiency and cross-polarization discrimination, while the manufacturing process is cheaper and simpler than that of the antennas made of stacked patches. Unfortunately, the element based on two sets of three coplanar parallel dipoles does not provide enough degrees of freedom to design dual-polarization transmit-receive (Tx-Rx) reflectarray antennas for space applications by means of wideband optimization techniques. For this reason, in the thesis a new reflectarray element is proposed which does provide enough degrees of freedom for each polarization. This new element consists of two orthogonal sets of four parallel dipoles, each set containing three coplanar dipoles and one stacked dipole. In order to accommodate the two sets of dipoles in each reflectarray cell, the set of dipoles for one polarization is shifted half a period from the set of dipoles for the other polarization. This also makes it possible to use only two levels of metallization for the reflectarray element, which simplifies the manufacturing process as in the case of the reflectarray element based on two sets of three parallel dipoles. A dual polarization dual-band (Tx-Rx) reflectarray antenna based on the new element has been designed, manufactured and measured. The antenna shows a very good performance in both Tx and Rx frequency bands with very low levels of cross-polarization. Numerical simulations carried out in the thesis have shown that the low levels of cross-polarization can be even made smaller by means of small rotations of the two sets of dipoles associated to each polarization.
Resumo:
The metallization stack Ti/Pd/Ag on n-type Si has been readily used in solar cells due to its low metal/semiconductor specific contact resistance, very high sheet conductance, bondability, long-term durability, and cost-effectiveness. In this study, the use of Ti/Pd/Ag metallization on n-type GaAs is examined, targeting electronic devices that need to handle high current densities and with grid-like contacts with limited surface coverage (i.e., solar cells, lasers, or light emitting diodes). Ti/Pd/Ag (50 nm/50 nm/1000 nm) metal layers were deposited on n-type GaAs by electron beam evaporation and the contact quality was assessed for different doping levels (from 1.3 × 1018 cm−3 to 1.6 × 1019 cm−3) and annealing temperatures (from 300°C to 750°C). The metal/semiconductor specific contact resistance, metal resistivity, and the morphology of the contacts were studied. The results show that samples doped in the range of 1018 cm−3 had Schottky-like I–V characteristics and only samples doped 1.6 × 1019 cm−3 exhibited ohmic behavior even before annealing. For the ohmic contacts, increasing annealing temperature causes a decrease in the specific contact resistance (ρ c,Ti/Pd/Ag ~ 5 × 10−4 Ω cm2). In regard to the metal resistivity, Ti/Pd/Ag metallization presents a very good metal conductivity for samples treated below 500°C (ρ M,Ti/Pd/Ag ~ 2.3 × 10−6 Ω cm); however, for samples treated at 750°C, metal resistivity is strongly degraded due to morphological degradation and contamination in the silver overlayer. As compared to the classic AuGe/Ni/Au metal system, the Ti/Pd/Ag system shows higher metal/semiconductor specific contact resistance and one order of magnitude lower metal resistivity.