5 resultados para magnetoelasic anisotropy
em Universidad Politécnica de Madrid
Resumo:
The elastic strain/stress fields (halo) around a compressed amorphous nano-track (core) caused by a single high-energy ion impact on LiNbO3 are calculated. A method is developed to approximately account for the effects of crystal anisotropy of LiNbO3 (symmetry 3m) on the stress fields for tracks oriented along the crystal axes (X, Y or Z). It only considers the zero-order (axial) harmonic contribution to the displacement field in the perpendicular plane and uses effective Poisson moduli for each particular orientation. The anisotropy is relatively small; however, it accounts for some differential features obtained for irradiations along the crystallographic axes X, Y and Z. In particular, the irradiation-induced disorder (including halo) and the associated surface swelling appear to be higher for irradiations along the X- or Y-axis in comparison with those along the Z-axis. Other irradiation effects can be explained by the model, e.g. fracture patterns or the morphology of pores after chemical etching of tracks. Moreover, it offers interesting predictions on the effect of irradiation on lattice parameters
Resumo:
This work summarizes the observations made on the variation and time evolution of the reflectanceanisotropy signal during the MOVPE growth of GaInPnucleation layers on Germanium substrates. This in situ monitoring tool is used to assess the impact of different nucleation routines and reactor conditions on the quality of the layers grown. This comparison is carried out by establishing a correlation between reflectanceanisotropy signature at 2.1 eV and the morphology of the epilayers evaluated by atomic force microscopy (AFM). This paper outlines the potential of reflectanceanisotropy to predict, explore, and therefore optimize, the best growth conditions that lead to a high quality III–V epilayer on a Ge substrate
Resumo:
Amorphous samples with helical induced anisotropy show magnetization processes that can be controlled by applying a longitudinal magnetic field simultaneously with an alternating current flowing through the sample. By varying the current amplitude and the phase difference between current and applied field, a wide range of coercivity and susceptibility values can be achieved. This work shows that the apparent coercive field and the susceptibility can be controlled in amorphous ribbons with helical anisotropy. These characteristics make these samples very suitable for their application as sensor cores, magnetic amplifiers, variable reluctance transformer cores, etc
Resumo:
An electrooptic effect in the blue phase of the cholesteric mixture S811-and the nematic mixture N5 is reported. To demonstrate this effect ac voltages (ƒ = 1000 Hz) between 0 and 150 νwere applied. Wavelength shifts of 70 nm were obtained.
Resumo:
We report the magnetic anisotropy and domain configuration of cosputtered TbFeGa alloys. The layers were deposited from two targets with compositions TbFe2 and Fe3Ga, respectively. The structural and magnetic properties do not only depend on the composition but also on the growth conditions. Alloys with the same composition but deposited using a DC or a pulsed power source in the TbFe2 target exhibit a different magnetic anisotropy. The perpendicular magnetic anisotropy, the size and topology of domain patterns can be tailored by changing the evaporation parameters of TbFe2. The width of the stripe domain increases from 235 to 835 nm when using the DC source in the TbFe2. We correlate this effect with Tb enrichment of the TbxFe1−x phases present in the samples.