16 resultados para low-rate distributed denial of service (DDoS) attack
em Universidad Politécnica de Madrid
Resumo:
Los avances en el hardware permiten disponer de grandes volúmenes de datos, surgiendo aplicaciones que deben suministrar información en tiempo cuasi-real, la monitorización de pacientes, ej., el seguimiento sanitario de las conducciones de agua, etc. Las necesidades de estas aplicaciones hacen emerger el modelo de flujo de datos (data streaming) frente al modelo almacenar-para-despuésprocesar (store-then-process). Mientras que en el modelo store-then-process, los datos son almacenados para ser posteriormente consultados; en los sistemas de streaming, los datos son procesados a su llegada al sistema, produciendo respuestas continuas sin llegar a almacenarse. Esta nueva visión impone desafíos para el procesamiento de datos al vuelo: 1) las respuestas deben producirse de manera continua cada vez que nuevos datos llegan al sistema; 2) los datos son accedidos solo una vez y, generalmente, no son almacenados en su totalidad; y 3) el tiempo de procesamiento por dato para producir una respuesta debe ser bajo. Aunque existen dos modelos para el cómputo de respuestas continuas, el modelo evolutivo y el de ventana deslizante; éste segundo se ajusta mejor en ciertas aplicaciones al considerar únicamente los datos recibidos más recientemente, en lugar de todo el histórico de datos. En los últimos años, la minería de datos en streaming se ha centrado en el modelo evolutivo. Mientras que, en el modelo de ventana deslizante, el trabajo presentado es más reducido ya que estos algoritmos no sólo deben de ser incrementales si no que deben borrar la información que caduca por el deslizamiento de la ventana manteniendo los anteriores tres desafíos. Una de las tareas fundamentales en minería de datos es la búsqueda de agrupaciones donde, dado un conjunto de datos, el objetivo es encontrar grupos representativos, de manera que se tenga una descripción sintética del conjunto. Estas agrupaciones son fundamentales en aplicaciones como la detección de intrusos en la red o la segmentación de clientes en el marketing y la publicidad. Debido a las cantidades masivas de datos que deben procesarse en este tipo de aplicaciones (millones de eventos por segundo), las soluciones centralizadas puede ser incapaz de hacer frente a las restricciones de tiempo de procesamiento, por lo que deben recurrir a descartar datos durante los picos de carga. Para evitar esta perdida de datos, se impone el procesamiento distribuido de streams, en concreto, los algoritmos de agrupamiento deben ser adaptados para este tipo de entornos, en los que los datos están distribuidos. En streaming, la investigación no solo se centra en el diseño para tareas generales, como la agrupación, sino también en la búsqueda de nuevos enfoques que se adapten mejor a escenarios particulares. Como ejemplo, un mecanismo de agrupación ad-hoc resulta ser más adecuado para la defensa contra la denegación de servicio distribuida (Distributed Denial of Services, DDoS) que el problema tradicional de k-medias. En esta tesis se pretende contribuir en el problema agrupamiento en streaming tanto en entornos centralizados y distribuidos. Hemos diseñado un algoritmo centralizado de clustering mostrando las capacidades para descubrir agrupaciones de alta calidad en bajo tiempo frente a otras soluciones del estado del arte, en una amplia evaluación. Además, se ha trabajado sobre una estructura que reduce notablemente el espacio de memoria necesario, controlando, en todo momento, el error de los cómputos. Nuestro trabajo también proporciona dos protocolos de distribución del cómputo de agrupaciones. Se han analizado dos características fundamentales: el impacto sobre la calidad del clustering al realizar el cómputo distribuido y las condiciones necesarias para la reducción del tiempo de procesamiento frente a la solución centralizada. Finalmente, hemos desarrollado un entorno para la detección de ataques DDoS basado en agrupaciones. En este último caso, se ha caracterizado el tipo de ataques detectados y se ha desarrollado una evaluación sobre la eficiencia y eficacia de la mitigación del impacto del ataque. ABSTRACT Advances in hardware allow to collect huge volumes of data emerging applications that must provide information in near-real time, e.g., patient monitoring, health monitoring of water pipes, etc. The data streaming model emerges to comply with these applications overcoming the traditional store-then-process model. With the store-then-process model, data is stored before being consulted; while, in streaming, data are processed on the fly producing continuous responses. The challenges of streaming for processing data on the fly are the following: 1) responses must be produced continuously whenever new data arrives in the system; 2) data is accessed only once and is generally not maintained in its entirety, and 3) data processing time to produce a response should be low. Two models exist to compute continuous responses: the evolving model and the sliding window model; the latter fits best with applications must be computed over the most recently data rather than all the previous data. In recent years, research in the context of data stream mining has focused mainly on the evolving model. In the sliding window model, the work presented is smaller since these algorithms must be incremental and they must delete the information which expires when the window slides. Clustering is one of the fundamental techniques of data mining and is used to analyze data sets in order to find representative groups that provide a concise description of the data being processed. Clustering is critical in applications such as network intrusion detection or customer segmentation in marketing and advertising. Due to the huge amount of data that must be processed by such applications (up to millions of events per second), centralized solutions are usually unable to cope with timing restrictions and recur to shedding techniques where data is discarded during load peaks. To avoid discarding of data, processing of streams (such as clustering) must be distributed and adapted to environments where information is distributed. In streaming, research does not only focus on designing for general tasks, such as clustering, but also in finding new approaches that fit bests with particular scenarios. As an example, an ad-hoc grouping mechanism turns out to be more adequate than k-means for defense against Distributed Denial of Service (DDoS). This thesis contributes to the data stream mining clustering technique both for centralized and distributed environments. We present a centralized clustering algorithm showing capabilities to discover clusters of high quality in low time and we provide a comparison with existing state of the art solutions. We have worked on a data structure that significantly reduces memory requirements while controlling the error of the clusters statistics. We also provide two distributed clustering protocols. We focus on the analysis of two key features: the impact on the clustering quality when computation is distributed and the requirements for reducing the processing time compared to the centralized solution. Finally, with respect to ad-hoc grouping techniques, we have developed a DDoS detection framework based on clustering.We have characterized the attacks detected and we have evaluated the efficiency and effectiveness of mitigating the attack impact.
Resumo:
An effective Distributed Denial of Service (DDoS) defense mechanism must guarantee legitimate users access to an Internet service masking the effects of possible attacks. That is, it must be able to detect threats and discard malicious packets in a online fashion. Given that emerging data streaming technology can enable such mitigation in an effective manner, in this paper we present STONE, a stream-based DDoS defense framework, which integrates anomaly-based DDoS detection and mitigation with scalable data streaming technology. With STONE, the traffic of potential targets is analyzed via continuous data streaming queries maintaining information used for both attack detection and mitigation. STONE provides minimal degradation of legitimate users traffic during DDoS attacks and it also faces effectively flash crowds. Our preliminary evaluation based on an implemented prototype and conducted with real legitimate and malicious traffic traces shows that STONE is able to provide fast detection and precise mitigation of DDoS attacks leveraging scalable data streaming technology.
Resumo:
Models are an effective tool for systems and software design. They allow software architects to abstract from the non-relevant details. Those qualities are also useful for the technical management of networks, systems and software, such as those that compose service oriented architectures. Models can provide a set of well-defined abstractions over the distributed heterogeneous service infrastructure that enable its automated management. We propose to use the managed system as a source of dynamically generated runtime models, and decompose management processes into a composition of model transformations. We have created an autonomic service deployment and configuration architecture that obtains, analyzes, and transforms system models to apply the required actions, while being oblivious to the low-level details. An instrumentation layer automatically builds these models and interprets the planned management actions to the system. We illustrate these concepts with a distributed service update operation.
Resumo:
Telecommunications networks have been always expanding and thanks to it, new services have appeared. The old mechanisms for carrying packets have become obsolete due to the new service requirements, which have begun working in real time. Real time traffic requires strict service guarantees. When this traffic is sent through the network, enough resources must be given in order to avoid delays and information losses. When browsing through the Internet and requesting web pages, data must be sent from a server to the user. If during the transmission there is any packet drop, the packet is sent again. For the end user, it does not matter if the webpage loads in one or two seconds more. But if the user is maintaining a conversation with a VoIP program, such as Skype, one or two seconds of delay in the conversation may be catastrophic, and none of them can understand the other. In order to provide support for this new services, the networks have to evolve. For this purpose MPLS and QoS were developed. MPLS is a packet carrying mechanism used in high performance telecommunication networks which directs and carries data using pre-established paths. Now, packets are forwarded on the basis of labels, making this process faster than routing the packets with the IP addresses. MPLS also supports Traffic Engineering (TE). This refers to the process of selecting the best paths for data traffic in order to balance the traffic load between the different links. In a network with multiple paths, routing algorithms calculate the shortest one, and most of the times all traffic is directed through it, causing overload and packet drops, without distributing the packets in the other paths that the network offers and do not have any traffic. But this is not enough in order to provide the real time traffic the guarantees it needs. In fact, those mechanisms improve the network, but they do not make changes in how the traffic is treated. That is why Quality of Service (QoS) was developed. Quality of service is the ability to provide different priority to different applications, users, or data flows, or to guarantee a certain level of performance to a data flow. Traffic is distributed into different classes and each of them is treated differently, according to its Service Level Agreement (SLA). Traffic with the highest priority will have the preference over lower classes, but this does not mean it will monopolize all the resources. In order to achieve this goal, a set policies are defined to control and alter how the traffic flows. Possibilities are endless, and it depends in how the network must be structured. By using those mechanisms it is possible to provide the necessary guarantees to the real-time traffic, distributing it between categories inside the network and offering the best service for both real time data and non real time data. Las Redes de Telecomunicaciones siempre han estado en expansión y han propiciado la aparición de nuevos servicios. Los viejos mecanismos para transportar paquetes se han quedado obsoletos debido a las exigencias de los nuevos servicios, que han comenzado a operar en tiempo real. El tráfico en tiempo real requiere de unas estrictas garantías de servicio. Cuando este tráfico se envía a través de la red, necesita disponer de suficientes recursos para evitar retrasos y pérdidas de información. Cuando se navega por la red y se solicitan páginas web, los datos viajan desde un servidor hasta el usuario. Si durante la transmisión se pierde algún paquete, éste se vuelve a mandar de nuevo. Para el usuario final, no importa si la página tarda uno o dos segundos más en cargar. Ahora bien, si el usuario está manteniendo una conversación usando algún programa de VoIP (como por ejemplo Skype) uno o dos segundos de retardo en la conversación podrían ser catastróficos, y ninguno de los interlocutores sería capaz de entender al otro. Para poder dar soporte a estos nuevos servicios, las redes deben evolucionar. Para este propósito se han concebido MPLS y QoS MPLS es un mecanismo de transporte de paquetes que se usa en redes de telecomunicaciones de alto rendimiento que dirige y transporta los datos de acuerdo a caminos preestablecidos. Ahora los paquetes se encaminan en función de unas etiquetas, lo cual hace que sea mucho más rápido que encaminar los paquetes usando las direcciones IP. MPLS también soporta Ingeniería de Tráfico (TE). Consiste en seleccionar los mejores caminos para el tráfico de datos con el objetivo de balancear la carga entre los diferentes enlaces. En una red con múltiples caminos, los algoritmos de enrutamiento actuales calculan el camino más corto, y muchas veces el tráfico se dirige sólo por éste, saturando el canal, mientras que otras rutas se quedan completamente desocupadas. Ahora bien, esto no es suficiente para ofrecer al tráfico en tiempo real las garantías que necesita. De hecho, estos mecanismos mejoran la red, pero no realizan cambios a la hora de tratar el tráfico. Por esto es por lo que se ha desarrollado el concepto de Calidad de Servicio (QoS). La calidad de servicio es la capacidad para ofrecer diferentes prioridades a las diferentes aplicaciones, usuarios o flujos de datos, y para garantizar un cierto nivel de rendimiento en un flujo de datos. El tráfico se distribuye en diferentes clases y cada una de ellas se trata de forma diferente, de acuerdo a las especificaciones que se indiquen en su Contrato de Tráfico (SLA). EL tráfico con mayor prioridad tendrá preferencia sobre el resto, pero esto no significa que acapare la totalidad de los recursos. Para poder alcanzar estos objetivos se definen una serie de políticas para controlar y alterar el comportamiento del tráfico. Las posibilidades son inmensas dependiendo de cómo se quiera estructurar la red. Usando estos mecanismos se pueden proporcionar las garantías necesarias al tráfico en tiempo real, distribuyéndolo en categorías dentro de la red y ofreciendo el mejor servicio posible tanto a los datos en tiempo real como a los que no lo son.
Resumo:
La computación basada en servicios (Service-Oriented Computing, SOC) se estableció como un paradigma ampliamente aceptado para el desarollo de sistemas de software flexibles, distribuidos y adaptables, donde las composiciones de los servicios realizan las tareas más complejas o de nivel más alto, frecuentemente tareas inter-organizativas usando los servicios atómicos u otras composiciones de servicios. En tales sistemas, las propriedades de la calidad de servicio (Quality of Service, QoS), como la rapídez de procesamiento, coste, disponibilidad o seguridad, son críticas para la usabilidad de los servicios o sus composiciones en cualquier aplicación concreta. El análisis de estas propriedades se puede realizarse de una forma más precisa y rica en información si se utilizan las técnicas de análisis de programas, como el análisis de complejidad o de compartición de datos, que son capables de analizar simultáneamente tanto las estructuras de control como las de datos, dependencias y operaciones en una composición. El análisis de coste computacional para la composicion de servicios puede ayudar a una monitorización predictiva así como a una adaptación proactiva a través de una inferencia automática de coste computacional, usando los limites altos y bajos como funciones del valor o del tamaño de los mensajes de entrada. Tales funciones de coste se pueden usar para adaptación en la forma de selección de los candidatos entre los servicios que minimizan el coste total de la composición, basado en los datos reales que se pasan al servicio. Las funciones de coste también pueden ser combinadas con los parámetros extraídos empíricamente desde la infraestructura, para producir las funciones de los límites de QoS sobre los datos de entrada, cuales se pueden usar para previsar, en el momento de invocación, las violaciones de los compromisos al nivel de servicios (Service Level Agreements, SLA) potenciales or inminentes. En las composiciones críticas, una previsión continua de QoS bastante eficaz y precisa se puede basar en el modelado con restricciones de QoS desde la estructura de la composition, datos empiricos en tiempo de ejecución y (cuando estén disponibles) los resultados del análisis de complejidad. Este enfoque se puede aplicar a las orquestaciones de servicios con un control centralizado del flujo, así como a las coreografías con participantes multiples, siguiendo unas interacciones complejas que modifican su estado. El análisis del compartición de datos puede servir de apoyo para acciones de adaptación, como la paralelización, fragmentación y selección de los componentes, las cuales son basadas en dependencias funcionales y en el contenido de información en los mensajes, datos internos y las actividades de la composición, cuando se usan construcciones de control complejas, como bucles, bifurcaciones y flujos anidados. Tanto las dependencias funcionales como el contenido de información (descrito a través de algunos atributos definidos por el usuario) se pueden expresar usando una representación basada en la lógica de primer orden (claúsulas de Horn), y los resultados del análisis se pueden interpretar como modelos conceptuales basados en retículos. ABSTRACT Service-Oriented Computing (SOC) is a widely accepted paradigm for development of flexible, distributed and adaptable software systems, in which service compositions perform more complex, higher-level, often cross-organizational tasks using atomic services or other service compositions. In such systems, Quality of Service (QoS) properties, such as the performance, cost, availability or security, are critical for the usability of services and their compositions in concrete applications. Analysis of these properties can become more precise and richer in information, if it employs program analysis techniques, such as the complexity and sharing analyses, which are able to simultaneously take into account both the control and the data structures, dependencies, and operations in a composition. Computation cost analysis for service composition can support predictive monitoring and proactive adaptation by automatically inferring computation cost using the upper and lower bound functions of value or size of input messages. These cost functions can be used for adaptation by selecting service candidates that minimize total cost of the composition, based on the actual data that is passed to them. The cost functions can also be combined with the empirically collected infrastructural parameters to produce QoS bounds functions of input data that can be used to predict potential or imminent Service Level Agreement (SLA) violations at the moment of invocation. In mission-critical applications, an effective and accurate continuous QoS prediction, based on continuations, can be achieved by constraint modeling of composition QoS based on its structure, known data at runtime, and (when available) the results of complexity analysis. This approach can be applied to service orchestrations with centralized flow control, and choreographies with multiple participants with complex stateful interactions. Sharing analysis can support adaptation actions, such as parallelization, fragmentation, and component selection, which are based on functional dependencies and information content of the composition messages, internal data, and activities, in presence of complex control constructs, such as loops, branches, and sub-workflows. Both the functional dependencies and the information content (described using user-defined attributes) can be expressed using a first-order logic (Horn clause) representation, and the analysis results can be interpreted as a lattice-based conceptual models.
Resumo:
Buses are considered a slow, low comfort and low reliability transport system, thus its negative and por image. In the framework of the 3iBS project (2012), several examples of innovative and/or effective solutions regarding the Level of Service (LoS) were analysed aiming to provide operators, practitioners and policy makers with a set of Good Practice Guidelines to strengthen the competitiveness of the bus in the urban environment. The identification of the key indicators regarding vehicles, infrastructure and operation was possible through the analysis of a set of case studies -among which Barcelona (Spain), Cagliari (Italy), London (United Kingdom), Paris and Nantes (France). A cross comparison between the case studies was carried out for contrasting the level of achievement of the different criteria considered. The information provided on Regulatory, Financial and Technical issues allows the identification of a number of specific factors influencing the implementation of a high quality transport scheme, and set the basis for the elaboration of a set of Guidelines for the implementation of an intelligent, innovative and integrated bus system, including the main barriers to be tackled.
Resumo:
Service-Oriented Architectures (SOA), and Web Services (WS), the technology generally used to implement them, achieve the integration of heterogeneous technologies, providing interoperability, and yielding the reutilization of pre-existent systems. Model-driven development methodologies provide inherent benefits such as increased productivity, greater reuse, and better maintainability, to name a few. Efforts on achieving model-driven development of SOAs already exist, but there is currently no standard solution that addresses non-functional aspects of these services as well. This paper presents an approach to integrate these non-functional aspects in the development of web services, with an emphasis on security.
Resumo:
The goal of this paper is twofold. Firstly, to survey in a systematic and uniform way the main results regarding the way membranes can be placed on processors in order to get a software/hardware simulation of P-Systems in a distributed environment. Secondly, we improve some results about the membrane dissolution problem, prove that it is connected, and discuss the possibility of simulating this property in the distributed model. All this yields an improvement in the system parallelism implementation since it gets an increment of the parallelism of the external communication among processors. Also, the number of processors grows in such a way that is notorious the increment of the parallelism in the application of the evolution rules and the internal communica-tionsstudy because it gets an increment of the parallelism in the application of the evolution rules and the internal communications. Proposed ideas improve previous architectures to tackle the communication bottleneck problem, such as reduction of the total time of an evolution step, increase of the number of membranes that could run on a processor and reduction of the number of processors
Resumo:
This paper empirically evaluates container terminal service attributes. The methodology proposed focuses on statistical control. Based on the concept of service segmentation, the authors employed control charts to classify container terminal services. The purpose of control charts is to allow simple detection of events that are indicative of actual process change. This simple decision can be difficult where the process characteristic is continuously varying, the control chart provides statistically objective criteria of change. When change is detected and considered good its cause should be identified and possibly become the new way of working, where the change is bad then its cause should be identified and eliminated. Both theoretical and practical implications of the research findings are discussed in this paper.
Resumo:
This paper empirically evaluates container terminal service attributes. The methodology proposed focuses on statistical control. Based on the concept of service segmentation, we employed control charts to classify container terminal services. The purpose of control charts is to allow simple detection of events that are indicative of actual process change. This simple decision can be difficult where the process characteristic is continuously varying; the control chart provides statistically objective criteria of change. When change is detected and considered good its cause should be identified and possibly become the new way of working, where the change is bad then its cause should be identified and eliminated. This paper is organized as follows: Section 1 is the introduction, Section 2 provides a brief note on other studies that inspired this research, section 3 focuses on the methodology used, and develops the results obtained and finally conclusions are shown in Section 4. Theoretical and practical implications of the research findings are discussed.
Resumo:
One of the key components of highly efficient multi-junction concentrator solar cells is the tunnel junction interconnection. In this paper, an improved 3D distributed model is presented that considers real operation regimes in a tunnel junction. This advanced model is able to accurately simulate the operation of the solar cell at high concentraions at which the photogenerated current surpasses the peak current of the tunnel junctionl Simulations of dual-junction solar cells were carried out with the improved model to illustrate its capabilities and the results have been correlated with experimental data reported in the literature. These simulations show that under certain circumstances, the solar cells short circuit current may be slightly higher than the tunnel junction peak current without showing the characteristic dip in the J-V curve. This behavior is caused by the lateral current spreading toward dark regions, which occurs through the anode/p-barrier of the tunnel junction.
Resumo:
Hydromorphic Podzol soils in the Amazon Basin generally support low-stature forests with some of the lowest amounts of aboveground net primary production (NPP) in the region. However, they can also exhibit large values of belowground NPP that can contribute significantly to the total annual inputs of organic matter into the soil. These hydromorphic Podzol soils also exhibit a horizon rich in organic matter at around 1?2m depth, presumably as a result of eluviation of dissolved organic matter and sesquioxides of Fe and Al. Therefore, it is likely that these ecosystems store large quantities of carbon by (1) large amounts of C inputs to soils dominated by their high levels of fine-root production, (2) stabilization of organic matter in an illuviation horizon due to significant vertical transfers of C. To assess these ideas we studied soil carbon dynamics using radiocarbon in two adjacent Amazon forests growing on contrasting soils: a hydromorphic Podzol and a well-drained Alisol supporting a high-stature terra firme forest. Our measurements showed similar concentrations of C and radiocarbon in the litter layer and the first 5 cm of the mineral soil for both sites. This result is consistent with the idea that the hydromorphic Podzol soil has similar soil C storage and cycling rates compared to the well-drained Alisol that supports a more opulent vegetation. However, we found important differences in carbon dynamics and transfers along the vertical profile. At both soils, we found similar radiocarbon concentrations in the subsoil, but the carbon released after incubating soil samples presented radiocarbon concentrations of recent origin in the Alisol, but not in the Podzol. There were no indications of incorporation of C fixed after 1950 in the illuvial horizon of the Podzol. With the aid of a simulation model, we predicted that only a minor fraction (1.7 %) of the labile carbon decomposed in the topsoil is transferred to the subsoil of the Podzol, while this proportional transfer is about 30% in the Alisol. Furthermore, our estimates were 8 times lower than previous estimations of vertical C transfers in Amazon Podzols, and question the validity of these previous estimations for all Podzols within the Amazon Basin. Our results also challenge our previous ideas about the genesis of these particular soils and suggest that either they are not true Podzols or the podzolization processes had already stopped.
Resumo:
Since the beginning of Internet, Internet Service Providers (ISP) have seen the need of giving to users? traffic different treatments defined by agree- ments between ISP and customers. This procedure, known as Quality of Service Management, has not much changed in the last years (DiffServ and Deep Pack-et Inspection have been the most chosen mechanisms). However, the incremen-tal growth of Internet users and services jointly with the application of recent Ma- chine Learning techniques, open up the possibility of going one step for-ward in the smart management of network traffic. In this paper, we first make a survey of current tools and techniques for QoS Management. Then we intro-duce clustering and classifying Machine Learning techniques for traffic charac-terization and the concept of Quality of Experience. Finally, with all these com-ponents, we present a brand new framework that will manage in a smart way Quality of Service in a telecom Big Data based scenario, both for mobile and fixed communications.
Resumo:
In the work, the results of an investigation of GaInP/GaInAs/Ge MJ SCs intended for converting concentrated solar radiation, when operating at low temperatures (down to -190 degrees C) are presented. A kink of the cell I-V characteristic has been observed in the region close to V-oc starting from -20 degrees C at operation under concentrated sunlight. The causes for its occurrence have been analyzed and the reasons for formation of a built-in potential barrier for majority charge carriers at the n-GaInP/n-Ge isotype hetero-interface are discussed. The effect of charge carrier transport in n-GaInP/n-p Ge heterostructures on MJ SC output characteristics at low temperatures has been studied including EL technique.
Resumo:
One of the most promising areas in which probabilistic graphical models have shown an incipient activity is the field of heuristic optimization and, in particular, in Estimation of Distribution Algorithms. Due to their inherent parallelism, different research lines have been studied trying to improve Estimation of Distribution Algorithms from the point of view of execution time and/or accuracy. Among these proposals, we focus on the so-called distributed or island-based models. This approach defines several islands (algorithms instances) running independently and exchanging information with a given frequency. The information sent by the islands can be either a set of individuals or a probabilistic model. This paper presents a comparative study for a distributed univariate Estimation of Distribution Algorithm and a multivariate version, paying special attention to the comparison of two alternative methods for exchanging information, over a wide set of parameters and problems ? the standard benchmark developed for the IEEE Workshop on Evolutionary Algorithms and other Metaheuristics for Continuous Optimization Problems of the ISDA 2009 Conference. Several analyses from different points of view have been conducted to analyze both the influence of the parameters and the relationships between them including a characterization of the configurations according to their behavior on the proposed benchmark.