12 resultados para learning success in xMOOCs
em Universidad Politécnica de Madrid
Resumo:
The objective of this paper is to address the methodological process of a teaching strategy for training project management complexity in postgraduate programs. The proposal is made up of different methods —intuitive, comparative, deductive, case study, problem-solving Project-Based Learning— and different activities inside and outside the classroom. This integration of methods motivated the current use of the concept of “learning strategy”. The strategy has two phases: firstly, the integration of the competences —technical, behavioral and contextual—in real projects; and secondly, the learning activity was oriented in upper level of knowledge, the evaluating the complexity for projects management in real situations. Both the competences in the learning strategy and the Project Complexity Evaluation are based on the ICB of IPMA. The learning strategy is applied in an international Postgraduate Program —Erasmus Mundus Master of Science— with the participation of five Universities of the European Union. This master program is fruit of a cooperative experience from one Educative Innovation Group of the UPM -GIE-Project-, two Research Groups of the UPM and the collaboration with other external agents to the university. Some reflections on the experience and the main success factors in the learning strategy were presented in the paper
Resumo:
The objective of this paper is to address the methodological process of a teaching strategy for training project management complexity in postgraduate programs. The proposal is made up of different methods —intuitive, comparative, deductive, case study, problem-solving Project-Based Learning— and different activities inside and outside the classroom. This integration of methods motivated the current use of the concept of ―learning strategy‖. The strategy has two phases: firstly, the integration of the competences —technical, behavioral and contextual—in real projects; and secondly, the learning activity was oriented in upper level of knowledge, the evaluating the complexity for projects management in real situations. Both the competences in the learning strategy and the Project Complexity Evaluation are based on the ICB of IPMA. The learning strategy is applied in an international Postgraduate Program —Erasmus Mundus Master of Science— with the participation of five Universities of the European Union. This master program is fruit of a cooperative experience from one Educative Innovation Group of the UPM -GIE-Project-, two Research Groups of the UPM and the collaboration with other external agents to the university. Some reflections on the experience and the main success factors in the learning strategy were presented in the paper.
Resumo:
Learning analytics is the analysis of static and dynamic data extracted from virtual learning environments, in order to understand and optimize the learning process. Generally, this dynamic data is generated by the interactions which take place in the virtual learning environment. At the present time, many implementations for grouping of data have been proposed, but there is no consensus yet on which interactions and groups must be measured and analyzed. There is also no agreement on what is the influence of these interactions, if any, on learning outcomes, academic performance or student success. This study presents three different extant interaction typologies in e-learning and analyzes the relation of their components with students? academic performance. The three different classifications are based on the agents involved in the learning process, the frequency of use and the participation mode, respectively. The main findings from the research are: a) that agent-based classifications offer a better explanation of student academic performance; b) that at least one component in each typology predicts academic performance; and c) that student-teacher and student-student, evaluating students, and active interactions, respectively, have a significant impact on academic performance, while the other interaction types are not significantly related to academic performance.
Resumo:
Nowadays, computer simulators are becoming basic tools for education and training in many engineering fields. In the nuclear industry, the role of simulation for training of operators of nuclear power plants is also recognized of the utmost relevance. As an example, the International Atomic Energy Agency sponsors the development of nuclear reactor simulators for education, and arranges the supply of such simulation programs. Aware of this, in 2008 Gas Natural Fenosa, a Spanish gas and electric utility that owns and operate nuclear power plants and promotes university education in the nuclear technology field, provided the Department of Nuclear Engineering of Universidad Politécnica de Madrid with the Interactive Graphic Simulator (IGS) of “José Cabrera” (Zorita) nuclear power plant, an industrial facility whose commercial operation ceased definitively in April 2006. It is a state-of-the-art full-scope real-time simulator that was used for training and qualification of the operators of the plant control room, as well as to understand and analyses the plant dynamics, and to develop, qualify and validate its emergency operating procedures.
Resumo:
This work describes the design and application of multimedia contents for web technologies-based training in minimally invasive surgery (MIS). The chosen strategy allows knowing the deficiencies of the current training methods so new multimedia contents can cover them. This study is concluded with the definition of three different types of multimedia contents accordingly to the development degree and didactic objectives that they present: Didactic resources are basic contents such as videos or documents that can be enhanced with contributions of users. On the other hand, case reports and didactic units have a defined structure. Didactic resources and case reports provide an informal training while didactic units are included in a more regulated training.
Resumo:
This paper presents some results of a R+D project entitled “e-Learning system for Practical Training of University students in Education Faculties (ForELearn)”, developed in Spain by the Universidad de Granada and the Universidad Politécnica de Madrid and funded by the Spanish Ministry of Education. In a first phase, through the use of AulaWeb Learning Management System, a set of adaptations and improvements of this software application have been done for the design and development of an experimental course of Practicum supervision. Next, the implementation of this course by means of a group of face to face and online seminars provides experimental data for the analysis and discussion about the point of view of users (preservice teachers) that have tracked their practice supervision with AulaWeb.
Resumo:
Validity and reliability of AMPET Greek versión: a first examination of learning motivation in Greek PE settings
Resumo:
The assessment of learning outcomes is a key concept in the European Credit Transfer and Accumulation System (ECTS) since credits are awarded when the assessment shows the competences which were aimed at have been developed at an appropriate level. This paper describes a study which was first part of the project of the Bologna Experts Team-Spain and then developed as an independent study. It was carried out with the overall goal to gain experience in the assessment of learning outcomes. More specifically it aimed at 1) designing procedures for the assessment of learning outcomes related to these compulsory generic competences; 2) testing some basic psychometric features that an assessment device with some consequences for the subjects being evaluated needs to prove; 3) testing different procedures of standard setting, and 4) using assessment results as orienting feedback to students and their tutors. The process of development of tests to carry out the assessment of learning outcomes related to these competences, as well as some basic features regarding their reliability and validity is described and first results on the comparison of results achieved at two academic levels, will also be described at a later stage.
Resumo:
When used appropriately, self- and peer-assessment are very effective learning tools. In the present work, instructor formative assessment and feedback, self-assessment (SA), and peer-assessment (PA) have been compared. During the first part of a semester, the students followed a continuous formative assessment. Subsequently, they were divided into two subgroups based on similar performances. One subgroup performed SAs, and the other followedPAduring the last part of the course. The performances of the two groups in solving problems were compared. Results suggest that PA is a more effective learning tool than SA, and both are more effective than instructor formative assessment. However, a survey that was conducted at the end of the experiment showed higher student confidence in instructor assessment than in PA. The students recognized the usefulness of acting as peer assessors, but believed that SA helped them more than PA.
Resumo:
The relationship between different learning evaluation methods and the academic success in an aeronautical engineering degree in Spain is analysed. The study is based on data about the evolution of academic achievement obtained along the last ten year, along which the evaluation and learning’s methods have suffered huge changes.
Resumo:
El aprendizaje automático y la cienciometría son las disciplinas científicas que se tratan en esta tesis. El aprendizaje automático trata sobre la construcción y el estudio de algoritmos que puedan aprender a partir de datos, mientras que la cienciometría se ocupa principalmente del análisis de la ciencia desde una perspectiva cuantitativa. Hoy en día, los avances en el aprendizaje automático proporcionan las herramientas matemáticas y estadísticas para trabajar correctamente con la gran cantidad de datos cienciométricos almacenados en bases de datos bibliográficas. En este contexto, el uso de nuevos métodos de aprendizaje automático en aplicaciones de cienciometría es el foco de atención de esta tesis doctoral. Esta tesis propone nuevas contribuciones en el aprendizaje automático que podrían arrojar luz sobre el área de la cienciometría. Estas contribuciones están divididas en tres partes: Varios modelos supervisados (in)sensibles al coste son aprendidos para predecir el éxito científico de los artículos y los investigadores. Los modelos sensibles al coste no están interesados en maximizar la precisión de clasificación, sino en la minimización del coste total esperado derivado de los errores ocasionados. En este contexto, los editores de revistas científicas podrían disponer de una herramienta capaz de predecir el número de citas de un artículo en el fututo antes de ser publicado, mientras que los comités de promoción podrían predecir el incremento anual del índice h de los investigadores en los primeros años. Estos modelos predictivos podrían allanar el camino hacia nuevos sistemas de evaluación. Varios modelos gráficos probabilísticos son aprendidos para explotar y descubrir nuevas relaciones entre el gran número de índices bibliométricos existentes. En este contexto, la comunidad científica podría medir cómo algunos índices influyen en otros en términos probabilísticos y realizar propagación de la evidencia e inferencia abductiva para responder a preguntas bibliométricas. Además, la comunidad científica podría descubrir qué índices bibliométricos tienen mayor poder predictivo. Este es un problema de regresión multi-respuesta en el que el papel de cada variable, predictiva o respuesta, es desconocido de antemano. Los índices resultantes podrían ser muy útiles para la predicción, es decir, cuando se conocen sus valores, el conocimiento de cualquier valor no proporciona información sobre la predicción de otros índices bibliométricos. Un estudio bibliométrico sobre la investigación española en informática ha sido realizado bajo la cultura de publicar o morir. Este estudio se basa en una metodología de análisis de clusters que caracteriza la actividad en la investigación en términos de productividad, visibilidad, calidad, prestigio y colaboración internacional. Este estudio también analiza los efectos de la colaboración en la productividad y la visibilidad bajo diferentes circunstancias. ABSTRACT Machine learning and scientometrics are the scientific disciplines which are covered in this dissertation. Machine learning deals with the construction and study of algorithms that can learn from data, whereas scientometrics is mainly concerned with the analysis of science from a quantitative perspective. Nowadays, advances in machine learning provide the mathematical and statistical tools for properly working with the vast amount of scientometrics data stored in bibliographic databases. In this context, the use of novel machine learning methods in scientometrics applications is the focus of attention of this dissertation. This dissertation proposes new machine learning contributions which would shed light on the scientometrics area. These contributions are divided in three parts: Several supervised cost-(in)sensitive models are learned to predict the scientific success of articles and researchers. Cost-sensitive models are not interested in maximizing classification accuracy, but in minimizing the expected total cost of the error derived from mistakes in the classification process. In this context, publishers of scientific journals could have a tool capable of predicting the citation count of an article in the future before it is published, whereas promotion committees could predict the annual increase of the h-index of researchers within the first few years. These predictive models would pave the way for new assessment systems. Several probabilistic graphical models are learned to exploit and discover new relationships among the vast number of existing bibliometric indices. In this context, scientific community could measure how some indices influence others in probabilistic terms and perform evidence propagation and abduction inference for answering bibliometric questions. Also, scientific community could uncover which bibliometric indices have a higher predictive power. This is a multi-output regression problem where the role of each variable, predictive or response, is unknown beforehand. The resulting indices could be very useful for prediction purposes, that is, when their index values are known, knowledge of any index value provides no information on the prediction of other bibliometric indices. A scientometric study of the Spanish computer science research is performed under the publish-or-perish culture. This study is based on a cluster analysis methodology which characterizes the research activity in terms of productivity, visibility, quality, prestige and international collaboration. This study also analyzes the effects of collaboration on productivity and visibility under different circumstances.
Resumo:
Analysis of learning data (learning analytics) is a new research field with high growth potential. The main objective of Learning analytics is the analysis of data (interactions being the basic data unit) generated in virtual learning environments, in order to maximize the outcomes of the learning process; however, a consensus has not been reached yet on which interactions must be measured and what is their influence on learning outcomes. This research is grounded on the study of e-learning interaction typologies and their relationship with students? academic performance, by means of a comparative study between different interaction typologies (based on the agents involved, frequency of use and participation mode). The main conclusions are a) that classifications based on agents offer a better explanation of academic performance; and b) that each of the three typologies are able to explain academic performance in terms of some of their components (student-teacher and student-student interactions, evaluating students interactions and active interactions, respectively), with the other components being nonrelevant.