8 resultados para joint factor analysis

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we propose the Seasonal Dynamic Factor Analysis (SeaDFA), an extension of Nonstationary Dynamic Factor Analysis, through which one can deal with dimensionality reduction in vectors of time series in such a way that both common and specific components are extracted. Furthermore, common factors are able to capture not only regular dynamics (stationary or not) but also seasonal ones, by means of the common factors following a multiplicative seasonal VARIMA(p, d, q) × (P, D, Q)s model. Additionally, a bootstrap procedure that does not need a backward representation of the model is proposed to be able to make inference for all the parameters in the model. A bootstrap scheme developed for forecasting includes uncertainty due to parameter estimation, allowing enhanced coverage of forecasting intervals. A challenging application is provided. The new proposed model and a bootstrap scheme are applied to an innovative subject in electricity markets: the computation of long-term point forecasts and prediction intervals of electricity prices. Several appendices with technical details, an illustrative example, and an additional table are available online as Supplementary Materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Operational Modal Analysis (OMA) of a structure, the data acquisition process may be repeated many times. In these cases, the analyst has several similar records for the modal analysis of the structure that have been obtained at di�erent time instants (multiple records). The solution obtained varies from one record to another, sometimes considerably. The differences are due to several reasons: statistical errors of estimation, changes in the external forces (unmeasured forces) that modify the output spectra, appearance of spurious modes, etc. Combining the results of the di�erent individual analysis is not straightforward. To solve the problem, we propose to make the joint estimation of the parameters using all the records. This can be done in a very simple way using state space models and computing the estimates by maximum-likelihood. The method provides a single result for the modal parameters that combines optimally all the records.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se investiga la distribución espacial de contenidos metálicos analizados sobre testigos de sondeos obtenidos en las campañas de exploración de la Veta Pallancata. Se aplica el análisis factorial a dicha distribución y a los cocientes de los valores metálicos, discriminando los que están correlacionados con la mineralización argentífera y que sirven como guías de exploración para hallar zonas de potenciales reservas por sus gradientes de variación.Abstract:The metal distribution in a vein may show the paths of hydrothermal fluid flow at the time of mineralization. Such information may assist for in-fill drilling. The Pallancata Vein has been intersected by 52 drill holes, whose cores were sampled and analysed, and the results plotted to examine the mineralisation trends. The spatial distribution of the ore is observed from the logAg/logPb ratio distribution. Au is in this case closely related to Ag (electrum and uytenbogaardtite, Ag3AuS2 ). The Au grade shows the same spatial distribution as the Ag grade. The logAg/logPb ratio distribution also suggests possible ore to be expected at deeper locations. Shallow supergene Ag enrichment was also observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computing the modal parameters of large structures in Operational Modal Analysis often requires to process data from multiple non simultaneously recorded setups of sensors. These setups share some sensors in common, the so-called reference sensors that are fixed for all the measurements, while the other sensors are moved from one setup to the next. One possibility is to process the setups separately what result in different modal parameter estimates for each setup. Then the reference sensors are used to merge or glue the different parts of the mode shapes to obtain global modes, while the natural frequencies and damping ratios are usually averaged. In this paper we present a state space model that can be used to process all setups at once so the global mode shapes are obtained automatically and subsequently only a value for the natural frequency and damping ratio of each mode is computed. We also present how this model can be estimated using maximum likelihood and the Expectation Maximization algorithm. We apply this technique to real data measured at a footbridge.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Las organizaciones son sistemas o unidades sociales, compuestas por personas que interactúan entre sí, para lograr objetivos comunes. Uno de sus objetivos es la productividad. La productividad es un constructo multidimensional en la que influyen aspectos tecnológicos, económicos, organizacionales y humanos. Diversos estudios apoyan la influencia de la motivación de las personas, de las habilidades y destrezas de los individuos, de su talento para desempeñar el trabajo, así como también del ambiente de trabajo presente en la organización, en la productividad. Por esta razón, el objetivo general de la investigación, es analizar la influencia entre los factores humanos y la productividad. Se hará énfasis en la persona como factor productivo clave, para responder a las interrogantes de la investigación, referidas a cuáles son las variables humanas que inciden en la productividad, a la posibilidad de plantear un modelo de productividad que considere el impacto del factor humano y la posibilidad de encontrar un método para la medición de la productividad que contemple la percepción del factor humano. Para resolver estas interrogantes, en esta investigación se busca establecer las relaciones entre las variables humanas y la productividad, vistas desde la perspectiva de tres unidades de análisis diferentes: individuo, grupo y organización, para la formulación de un modelo de productividad humana y el diseño de un instrumento para su medida. Una de las principales fuente de investigación para la elección de las variables humanas, la formulación del modelo, y el método de medición de la productividad, fue la revisión de la literatura disponible sobre la productividad y el factor humano en las organizaciones, lo que facilitó el trazado del marco teórico y conceptual. Otra de las fuentes para la selección fue la opinión de expertos y de especialistas directamente involucrados en el sector eléctrico venezolano, lo cual facilitó la obtención de un modelo, cuyas variables reflejasen la realidad del ámbito en estudio. Para aportar una interpretación explicativa del fenómeno, se planteó el modelo de los Factores Humanos vs Productividad (MFHP), el cual se analizó desde la perspectiva del análisis causal y fue conformado por tres variables latentes exógenas denominadas: factores individuales, factores grupales y factores organizacionales, que estaban relacionadas con una variable latente endógena denominada productividad. El MFHP se formuló mediante la metodología de los modelos de ecuaciones estructurales (SEM). Las relaciones inicialmente propuestas entre las variables latentes fueron corroboradas por los ajustes globales del modelo, se constataron las relaciones entre las variables latentes planteadas y sus indicadores asociados, lo que facilitó el enunciado de 26 hipótesis, de las cuales se comprobaron 24. El modelo fue validado mediante la estrategia de modelos rivales, utilizada para comparar varios modelos SEM, y seleccionar el de mejor ajuste, con sustento teórico. La aceptación del modelo se realizó mediante la evaluación conjunta de los índices de bondad de ajuste globales. Asimismo, para la elaboración del instrumento de medida de la productividad (IMPH), se realizó un análisis factorial exploratorio previo a la aplicación del análisis factorial confirmatorio, aplicando SEM. La revisión de los conceptos de productividad, la incidencia del factor humano, y sus métodos de medición, condujeron al planteamiento de métodos subjetivos que incorporaron la percepción de los principales actores del proceso productivo, tanto para la selección de las variables, como para la formulación de un modelo de productividad y el diseño de un instrumento de medición de la productividad. La contribución metodológica de este trabajo de investigación, ha sido el empleo de los SEM para relacionar variables que tienen que ver con el comportamiento humano en la organización y la productividad, lo cual abre nuevas posibilidades a la investigación en este ámbito. Organizations are social systems or units composed of people who interact with each other to achieve common goals. One objective is productivity, which is a multidimensional construct influenced by technological, economic, organizational and human aspects. Several studies support the influence on productivity of personal motivation, of the skills and abilities of individuals, of their talent for the job, as well as of the work environment present in the organization. Therefore, the overall objective of this research is to analyze the influence between human factors and productivity. The emphasis is on the individual as a productive factor which is key in order to answer the research questions concerning the human variables that affect productivity and to address the ability to propose a productivity model that considers the impact of the human factor and the possibility of finding a method for the measurement of productivity that includes the perception of the human factor. To consider these questions, this research seeks to establish the relationships between human and productivity variables, as seen from the perspective of three different units of analysis: the individual, the group and the organization, in order to formulate a model of human productivity and to design an instrument for its measurement. A major source of research for choosing the human variables, model formulation, and method of measuring productivity, was the review of the available literature on productivity and the human factor in organizations which facilitated the design of the theoretical and conceptual framework. Another source for the selection was the opinion of experts and specialists directly involved in the Venezuelan electricity sector which facilitated obtaining a model whose variables reflect the reality of the area under study. To provide an interpretation explaining the phenomenon, the model of the Human Factors vs. Productivity Model (HFPM) was proposed. This model has been analyzed from the perspective of causal analysis and was composed of three latent exogenous variables denominated: individual, group and organizational factors which are related to a latent variable denominated endogenous productivity. The HFPM was formulated using the methodology of Structural Equation Modeling (SEM). The initially proposed relationships between latent variables were confirmed by the global fits of the model, the relationships between the latent variables and their associated indicators enable the statement of 26 hypotheses, of which 24 were confirmed. The model was validated using the strategy of rival models, used for comparing various SEM models and to select the one that provides the best fit, with theoretical support. The acceptance of the model was performed through the joint evaluation of the adequacy of global fit indices. Additionally, for the development of an instrument to measure productivity, an exploratory factor analysis was performed prior to the application of a confirmatory factor analysis, using SEM. The review of the concepts of productivity, the impact of the human factor, and the measurement methods led to a subjective methods approach that incorporated the perception of the main actors of the production process, both for the selection of variables and for the formulation of a productivity model and the design of an instrument to measure productivity. The methodological contribution of this research has been the use of SEM to relate variables that have to do with human behavior in the organization and with productivity, opening new possibilities for research in this area.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Applications involving travel behavior from the perspective of land use are dating from the 1990s. Usually, four important components are distinguished: density, diversity and design (3D?s of Cervero and Kockelman) and accessibility (introduced by Geurs and van Wee). But there is not a general agreement on how to measure each of those 4 components. Density is used to be measured as population and employment densities, but others authors separate population density between residential and building densities. A lot of measures have been developed to estimate diversity: among others, a dissimilarity index to indicate the degree to which different land uses lie within one another?s surrounding, an entropy index to quantify the degree of balance across various land use types or proximities to commercial-retail uses. Design has been characterized by site design, and dwelling and street characteristics. Lastly, accessibility has become a frequently used concept, but its meaning on travel behavior field always refers to the ability ?to reach activities or locations by means of a travel mode?, measured as accessibility to jobs, to leisure activities, and others. Furthermore, the previous evidence is mainly based on US data or on north European countries. Therefore, this paper adds some new evidence from a Spanish perspective to the research debate. Through a Madrid smartphone-based survey, factor analysis is used to linearly combine variables into the 3D?s and accessibility dimensions of the built environment. At a first step for future investigations, land use variables will be treated to define accurately the previous 4 components.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main objective of this paper is the development and application of multivariate time series models for forecasting aggregated wind power production in a country or region. Nowadays, in Spain, Denmark or Germany there is an increasing penetration of this kind of renewable energy, somehow to reduce energy dependence on the exterior, but always linked with the increaseand uncertainty affecting the prices of fossil fuels. The disposal of accurate predictions of wind power generation is a crucial task both for the System Operator as well as for all the agents of the Market. However, the vast majority of works rarely onsider forecasting horizons longer than 48 hours, although they are of interest for the system planning and operation. In this paper we use Dynamic Factor Analysis, adapting and modifying it conveniently, to reach our aim: the computation of accurate forecasts for the aggregated wind power production in a country for a forecasting horizon as long as possible, particularly up to 60 days (2 months). We illustrate this methodology and the results obtained for real data in the leading country in wind power production: Denmark

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article tests a multidimensional model of the marketing and sales organizational interface, based on a previous one tested for European companies (Homburg et al., 2008), in a specific taxonomical configuration: a brand focused professional multinational, in three successful Latin American branches. Factor reliability and hypotheses were studied through a confirmatory factor analysis. Results show the existence of a positive relationship between formalization, joint planning, teamwork, information sharing, trust and interface quality. Interface quality and business performance show also a positive relationship. This empirical study contributes to the knowledge of the organizational enhancement of interactions in emerging markets