71 resultados para high-speed atomic force microscope

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The traditional ballast track structures are still being used in high speed railways lines with success, however technical problems or performance features have led to non-ballast track solution in some cases. A considerable maintenance work is needed for ballasted tracks due to the track deterioration. Therefore it is very important to understand the mechanism of track deterioration and to predict the track settlement or track irregularity growth rate in order to reduce track maintenance costs and enable new track structures to be designed. The objective of this work is to develop the most adequate and efficient models for calculation of dynamic traffic load effects on railways track infrastructure, and then evaluate the dynamic effect on the ballast track settlement, using a ballast track settlement prediction model, which consists of the vehicle/track dynamic model previously selected and a track settlement law. The calculations are based on dynamic finite element models with direct time integration, contact between wheel and rail and interaction with railway cars. A initial irregularity profile is used in the prediction model. The track settlement law is considered to be a function of number of loading cycles and the magnitude of the loading, which represents the long-term behavior of ballast settlement. The results obtained include the track irregularity growth and the contact force in the final interaction of numerical simulation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of high-speed bridges at resonance, particularly under flexural vibrations, constitutes a subject of research for many scientists and engineers at the moment. The topic is of great interest because, as a matter of fact, such kind of behaviour is not unlikely to happen due to the elevated operating speeds of modern rains, which in many cases are equal to or even exceed 300 km/h ( [1,2]). The present paper addresses the subject of the evolution of the wheel-rail contact forces during resonance situations in simply supported bridges. Based on a dimensionless formulation of the equations of motion presented in [4], very similar to the one introduced by Klasztorny and Langer in [3], a parametric study is conducted and the contact forces in realistic situations analysed in detail. The effects of rail and wheel irregularities are not included in the model. The bridge is idealised as an Euler-Bernoulli beam, while the train is simulated by a system consisting of rigid bodies, springs and dampers. The situations such that a severe reduction of the contact force could take place are identified and compared with typical situations in actual bridges. To this end, the simply supported bridge is excited at resonace by means of a theoretical train consisting of 15 equidistant axles. The mechanical characteristics of all axles (unsprung mass, semi-sprung mass, and primary suspension system) are identical. This theoretical train permits the identification of the key parameters having an influence on the wheel-rail contact forces. In addition, a real case of a 17.5 m bridges traversed by the Eurostar train is analysed and checked against the theoretical results. The influence of three fundamental parameters is investigated in great detail: a) the ratio of the fundamental frequency of the bridge and natural frequency of the primary suspension of the vehicle; b) the ratio of the total mass of the bridge and the semi-sprung mass of the vehicle and c) the ratio between the length of the bridge and the characteristic distance between consecutive axles. The main conclusions derived from the investigation are: The wheel-rail contact forces undergo oscillations during the passage of the axles over the bridge. During resonance, these oscillations are more severe for the rear wheels than for the front ones. If denotes the span of a simply supported bridge, and the characteristic distance between consecutive groups of loads, the lower the value of , the greater the oscillations of the contact forces at resonance. For or greater, no likelihood of loss of wheel-rail contact has been detected. The ratio between the frequency of the primary suspension of the vehicle and the fundamental frequency of the bridge is denoted by (frequency ratio), and the ratio of the semi-sprung mass of the vehicle (mass of the bogie) and the total mass of the bridge is denoted by (mass ratio). For any given frequency ratio, the greater the mass ratio, the greater the oscillations of the contact forces at resonance. The oscillations of the contact forces at resonance, and therefore the likelihood of loss of wheel-rail contact, present a minimum for approximately between 0.5 and 1. For lower or higher values of the frequency ratio the oscillations of the contact forces increase. Neglecting the possible effects of torsional vibrations, the metal or composite bridges with a low linear mass have been found to be the ones where the contact forces may suffer the most severe oscillations. If single-track, simply supported, composite or metal bridges were used in high-speed lines, and damping ratios below 1% were expected, the minimum contact forces at resonance could drop to dangerous values. Nevertheless, this kind of structures is very unusual in modern high-speed railway lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A low-mass impact sensor for high-speed firmness sensing of fruits was built and tested. Results of tests with a rubber ball indicated that the impact measurement was not sensitive to the distance between the impactor and the impacting surface of the sample within the range of 8 to 23 mm, and was not sensitive to how the sample was held. Tests with kiwifruits and peaches show good correlation between firmness readings obtained with the impact sensor and those obtained with the penetrometer. The best correlation was between the slope of the impact curve (at mid-point) and the force-deformation firmness. Preliminary test showed that the sensor could sense fruit firmness at a speed of 5 fruits/s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La influencia de la aerodinámica en el diseño de los trenes de alta velocidad, unida a la necesidad de resolver nuevos problemas surgidos con el aumento de la velocidad de circulación y la reducción de peso del vehículo, hace evidente el interés de plantear un estudio de optimización que aborde tales puntos. En este contexto, se presenta en esta tesis la optimización aerodinámica del testero de un tren de alta velocidad, llevada a cabo mediante el uso de métodos de optimización avanzados. Entre estos métodos, se ha elegido aquí a los algoritmos genéticos y al método adjunto como las herramientas para llevar a cabo dicha optimización. La base conceptual, las características y la implementación de los mismos se detalla a lo largo de la tesis, permitiendo entender los motivos de su elección, y las consecuencias, en términos de ventajas y desventajas que cada uno de ellos implican. El uso de los algorimos genéticos implica a su vez la necesidad de una parametrización geométrica de los candidatos a óptimo y la generación de un modelo aproximado que complementa al método de optimización. Estos puntos se describen de modo particular en el primer bloque de la tesis, enfocada a la metodología seguida en este estudio. El segundo bloque se centra en la aplicación de los métodos a fin de optimizar el comportamiento aerodinámico del tren en distintos escenarios. Estos escenarios engloban los casos más comunes y también algunos de los más exigentes a los que hace frente un tren de alta velocidad: circulación en campo abierto con viento frontal o viento lateral, y entrada en túnel. Considerando el caso de viento frontal en campo abierto, los dos métodos han sido aplicados, permitiendo una comparación de las diferentes metodologías, así como el coste computacional asociado a cada uno, y la minimización de la resistencia aerodinámica conseguida en esa optimización. La posibilidad de evitar parametrizar la geometría y, por tanto, reducir el coste computacional del proceso de optimización es la característica más significativa de los métodos adjuntos, mientras que en el caso de los algoritmos genéticos se destaca la simplicidad y capacidad de encontrar un óptimo global en un espacio de diseño multi-modal o de resolver problemas multi-objetivo. El caso de viento lateral en campo abierto considera nuevamente los dos métoxi dos de optimización anteriores. La parametrización se ha simplificado en este estudio, lo que notablemente reduce el coste numérico de todo el estudio de optimización, a la vez que aún recoge las características geométricas más relevantes en un tren de alta velocidad. Este análisis ha permitido identificar y cuantificar la influencia de cada uno de los parámetros geométricos incluídos en la parametrización, y se ha observado que el diseño de la arista superior a barlovento es fundamental, siendo su influencia mayor que la longitud del testero o que la sección frontal del mismo. Finalmente, se ha considerado un escenario más a fin de validar estos métodos y su capacidad de encontrar un óptimo global. La entrada de un tren de alta velocidad en un túnel es uno de los casos más exigentes para un tren por el pico de sobrepresión generado, el cual afecta a la confortabilidad del pasajero, así como a la estabilidad del vehículo y al entorno próximo a la salida del túnel. Además de este problema, otro objetivo a minimizar es la resistencia aerodinámica, notablemente superior al caso de campo abierto. Este problema se resuelve usando algoritmos genéticos. Dicho método permite obtener un frente de Pareto donde se incluyen el conjunto de óptimos que minimizan ambos objetivos. ABSTRACT Aerodynamic design of trains influences several aspects of high-speed trains performance in a very significant level. In this situation, considering also that new aerodynamic problems have arisen due to the increase of the cruise speed and lightness of the vehicle, it is evident the necessity of proposing an optimization study concerning the train aerodynamics. Thus, the aerodynamic optimization of the nose shape of a high-speed train is presented in this thesis. This optimization is based on advanced optimization methods. Among these methods, genetic algorithms and the adjoint method have been selected. A theoretical description of their bases, the characteristics and the implementation of each method is detailed in this thesis. This introduction permits understanding the causes of their selection, and the advantages and drawbacks of their application. The genetic algorithms requirethe geometrical parameterization of any optimal candidate and the generation of a metamodel or surrogate model that complete the optimization process. These points are addressed with a special attention in the first block of the thesis, focused on the methodology considered in this study. The second block is referred to the use of these methods with the purpose of optimizing the aerodynamic performance of a high-speed train in several scenarios. These scenarios englobe the most representative operating conditions of high-speed trains, and also some of the most exigent train aerodynamic problems: front wind and cross-wind situations in open air, and the entrance of a high-speed train in a tunnel. The genetic algorithms and the adjoint method have been applied in the minimization of the aerodynamic drag on the train with front wind in open air. The comparison of these methods allows to evaluate the methdology and computational cost of each one, as well as the resulting minimization of the aerodynamic drag. Simplicity and robustness, the straightforward realization of a multi-objective optimization, and the capability of searching a global optimum are the main attributes of genetic algorithm. However, the requirement of geometrically parameterize any optimal candidate is a significant drawback that is avoided with the use of the adjoint method. This independence of the number of design variables leads to a relevant reduction of the pre-processing and computational cost. Considering the cross-wind stability, both methods are used again for the minimization of the side force. In this case, a simplification of the geometric parameterization of the train nose is adopted, what dramatically reduces the computational cost of the optimization process. Nevertheless, some of the most important geometrical characteristics are still described with this simplified parameterization. This analysis identifies and quantifies the influence of each design variable on the side force on the train. It is observed that the A-pillar roundness is the most demanding design parameter, with a more important effect than the nose length or the train cross-section area. Finally, a third scenario is considered for the validation of these methods in the aerodynamic optimization of a high-speed train. The entrance of a train in a tunnel is one of the most exigent train aerodynamic problems. The aerodynamic consequences of high-speed trains running in a tunnel are basically resumed in two correlated phenomena, the generation of pressure waves and an increase in aerodynamic drag. This multi-objective optimization problem is solved with genetic algorithms. The result is a Pareto front where a set of optimal solutions that minimize both objectives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A post-complementary metal oxide semiconductor (CMOS) compatible microfabrication process of piezoelectric cantilevers has been developed. The fabrication process is suitable for standard silicon technology and provides low-cost and high-throughput manufacturing. This work reports design, fabrication and characterization of piezoelectric cantilevers based on aluminum nitride (AlN) thin films synthesized at room temperature. The proposed microcantilever system is a sandwich structure composed of chromium (Cr) electrodes and a sputtered AlN film. The key issue for cantilever fabrication is the growth at room temperature of the AlN layer by reactive sputtering, making possible the innovative compatibility of piezoelectric MEMS devices with CMOS circuits already processed. AlN and Cr have been etched by inductively coupled plasma (ICP) dry etching using a BCl3–Cl2–Ar plasma chemistry. As part of the novelty of the post-CMOS micromachining process presented here, a silicon Si (1 0 0) wafer has been used as substrate as well as the sacrificial layer used to release the microcantilevers. In order to achieve this, the Si surface underneath the structure has been wet etched using an HNA (hydrofluoric acid + nitric acid + acetic acid) based solution. X-ray diffraction (XRD) characterization indicated the high crystalline quality of the AlN film. An atomic force microscope (AFM) has been used to determine the Cr electrode surface roughness. The morphology of the fabricated devices has been studied by scanning electron microscope (SEM). The cantilevers have been piezoelectrically actuated and their out-of-plane vibration modes were detected by vibrometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural continuity of fully integral bridges entails many advantages and some drawbacks. Among the latter, the cyclic expansions and contractions of the deck caused by seasonal thermal variations impose alternating displacements at the piers and abutments, with effects that may be difficult to establish reliably. The advantages include easier construction and cheaper maintenance but, especially, horizontal loads can be transmitted to the ground in a much better way than in conventional bridges. This paper first presents a methodology for dealing with the problems that the cyclic displacements imposed raise at the abutments and at the bridge piers. At the former, large pressures may develop, possibly accompanied by undesirable surface settlements. At the latter, the degree of cracking and the ability to carry the specified loads may be in question. Having quantified the drawbacks, simplified but realistic analyses are conducted of the response of an integral bridge to braking and seismic loads. It is shown that integral bridges constitute an excellent alternative in the context of the requirements posed by new high-speed railway lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research work that here is summarized, it is classed on the area of dynamics and measures of railway safety, specifically in the study of the influence of the cross wind on the high-speed trains as well as the study of new mitigation measures like wind breaking structures or wind fences, with optimized shapes. The work has been developed in the Research Center in Rail Technology (CITEF), and supported by the Universidad Politécnica de Madrid, Spain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Culverts are very common in recent railway lines. Wild life corridors and drainage conducts often fall in this category of partially buried structures. Their dynamic behavior has received far less attention than other structures such as bridges but its large number makes that study an interesting challenge from the point of view of safety and savings. In this paper a complete study of a culvert, including on-site measurements as well as numerical modelling, will be presented. The structure belongs to the high speed railway line linking Segovia and Valladolid, in Spain. The line was opened to traffic in 2004. Its dimensions (3x3m) are the most frequent along the line. Other factors such as reduced overburden (0.6m) and an almost right angle with the track axis make it an interesting example to extract generalized conclusions. On site measurements have been performed in the structure recording the dynamic response at selected points of the structure during the passage of high speed trains at speeds ranging between 200 and 300km/h. The measurements by themselves provide a good insight into the main features of the dynamic behaviour of the structure. A 3D finite element model of the structure, representing its key features was also studied as it allows further understanding of the dynamic response to the train loads . In the paper the discrepancies between predicted and measured vibration levels will be analyzed and some advices on numerical modelling will be proposed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An aerodynamic optimization of the train aerodynamic characteristics in term of front wind action sensitivity is carried out in this paper. In particular, a genetic algorithm (GA) is used to perform a shape optimization study of a high-speed train nose. The nose is parametrically defined via Bézier Curves, including a wider range of geometries in the design space as possible optimal solutions. Using a GA, the main disadvantage to deal with is the large number of evaluations need before finding such optimal. Here it is proposed the use of metamodels to replace Navier-Stokes solver. Among all the posibilities, Rsponse Surface Models and Artificial Neural Networks (ANN) are considered. Best results of prediction and generalization are obtained with ANN and those are applied in GA code. The paper shows the feasibility of using GA in combination with ANN for this problem, and solutions achieved are included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the studies carried out to develop and calibrate the optimal models for the objectives of this work. In particular, quarter bogie model for vehicle, rail-wheel contact with Lagrangian multiplier method, 2D spatial discretization were selected as the optimal decisions. Furthermore, the 3D model of coupled vehicle-track also has been developed to contrast the results obtained in the 2D model. The calculations were carried out in the time domain and envelopes of relevant results were obtained for several track profiles and speed ranges. Distributed elevation irregularities were generated based on power spectral density (PSD) distributions. The results obtained include the wheel-rail contact forces, forces transmitted to the bogie by primary suspension. The latter loads are relevant for the purpose of evaluating the performance of the infrastructure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work a methodology for analysing the lateral coupled behavior of large viaducts and high-speed trains is proposed. The finite element method is used for the structure, multibody techniques are applied for vehicles and the interaction between them is established introducing wheel-rail nonlinear contact forces. This methodology is applied for the analysis of the railway viaduct of the R´ıo Barbantino, which is a very long and tall bridge in the north-west spanish high-speed line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Railway bridges have specific requirements related to safety, which often are critical aspects of design. In this paper the main phenomena are reviewed, namely vertical dynamic effects for impact effect of moving loads and resonance in high-speed, service limit states which affect the safety of running traffic, and lateral dynamic effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a low-power, high-speed 4-data-path 128-point mixed-radix (radix-2 & radix-2 2 ) FFT processor for MB-OFDM Ultra-WideBand (UWB) systems. The processor employs the single-path delay feedback (SDF) pipelined structure for the proposed algorithm, it uses substructure-sharing multiplication units and shift-add structure other than traditional complex multipliers. Furthermore, the word lengths are properly chosen, thus the hardware costs and power consumption of the proposed FFT processor are efficiently reduced. The proposed FFT processor is verified and synthesized by using 0.13 µm CMOS technology with a supply voltage of 1.32 V. The implementation results indicate that the proposed 128-point mixed-radix FFT architecture supports a throughput rate of 1Gsample/s with lower power consumption in comparison to existing 128-point FFT architectures

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physical model based on moving constant loads is widely used for the analysis of railway bridges. Nevertheless, the moving loads model is not well suited for the study of short bridges (L⩽20–25 m) since the results it produces (displacements and accelerations) are much greater than those obtained from more sophisticated ones. In this paper two factors are analysed which are believed to have an influence in the dynamic behaviour of short bridges. These two factors are not accounted for by the moving loads model and are the following: the distribution of the loads due to the presence of the sleepers and ballast layer, and the train–bridge interaction. In order to decide on their influence several numerical simulations have been performed. The results are presented and discussed herein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper resumes the results obtained applying various implementations of the direct boundary element method (BEM) to the solution of the Laplace Equation governing the potential flow problem during everyday service manoeuvres of high-speed trains. In particular the results of train passing events at three different speed combinations are presented. Some recommendations are given in order to reduce calculation times which as is demonstrated can be cut down to not exceed reasonable limits even when using nowadays office PCs. Thus the method is shown to be a very valuable tool for the design engineer.