6 resultados para function identification

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the experiences using remote laboratories for thorough analysis of a thermal system, including disturbances. Remote laboratories for education in subjects of control, is a common resorted method, used by universities. This method is applied to offer a flexible service in schedules so as to obtain greater and better results of available resources. Remote laboratories have been used for controlling physical devices remotely. Furthermore, remote labs have been used for transfer function identification of real equipment. Nevertheless, remote analyses of disturbances have not been done. The aim of this contribution is thereby to apply the experience of remote laboratories in the study of disturbances. Some experiments are carried out to demonstrate the effectiveness in using remote laboratories for complete analysis of a thermal system. Considering the remote access to thermal system, “Sistema de Laboratorios a Distancia” (SLD) was used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present and discuss an algorithm to identify and characterize the long icosahedral structures (staggered pentagonal nanowires with 1-5-1-5 atomic structure) that appear in Molecular Dynamics simulations of metallic nanowires of different species subjected to stretching. The use of this algorithm allows the identification of pentagonal rings forming the icosahedral structure as well as the determination of its number np , and the maximum length of the pentagonal nanowire Lpm. The algorithm is tested with some ideal structures to show its ability to discriminate between pentagonal rings and other ring structures. We applied the algorithm to Ni nanowires with temperatures ranging between 4K and 865K, stretched along the [111], [100] and [110] directions. We studied statistically the formation of pentagonal nanowires obtaining the distributions of length Lpm and number of rings np as function of the temperature. The Lpm distribution presents a peaked shape, with peaks located at fixed distances whose separation corresponds to the distance between two consecutive pentagonal rings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among those damage identification methods, the Wavelet Packet Energy Curvature Difference (WPECD) Method is an effective one. However, most of the existing methods rely on numerical simulation and are unverified via experiment, and very few of them have been applied to practice. In this paper, the validity of WPECD in structural damage identification is verified by a numerical example. A damage simulation experiment is taken on a real replaced girder at the Ziya River New Bridge in Cangzhou. Two damage cases are applied and the acceleration responses at the measuring points are obtained, based on which the damages are identified with the WPECD Method, and the influence of wavelet function and decomposition level is studied. The results show that the WPECD Method can identify structure damage efficiently and can be put into practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The water time constant and mechanical time constant greatly influences the power and speed oscillations of hydro-turbine-generator unit. This paper discusses the turbine power transients in response to different nature and changes in the gate position. The work presented here analyses the characteristics of hydraulic system with an emphasis on changes in the above time constants. The simulation study is based on mathematical first-, second-, third- and fourth-order transfer function models. The study is further extended to identify discrete time-domain models and their characteristic representation without noise and with noise content of 10 & 20 dB signal-to-noise ratio (SNR). The use of self-tuned control approach in minimising the speed deviation under plant parameter changes and disturbances is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unfavorable environmental and developmental conditions may cause disturbances in protein folding in the endoplasmic reticulum (ER) that are recognized and counteracted by components of the Unfolded Protein Response (UPR) signaling pathways. The early cellular responses include transcriptional changes to increase the folding and processing capacity of the ER. In this study, we systematically screened a collection of inducible transgenic Arabidopsis plants expressing a library of transcription factors for resistance toward UPR-inducing chemicals. We identified 23 candidate genes that may function as novel regulators of the UPR and of which only three genes (bZIP10, TBF1, and NF-YB3) were previously associated with the UPR. The putative role of identified candidate genes in the UPR signaling is supported by favorable expression patterns in both developmental and stress transcriptional analyses. We demonstrated that WRKY75 is a genuine regulator of the ER-stress cellular responses as its expression was found to be directly responding to ER stress-inducing chemicals. In addition, transgenic Arabidopsis plants expressing WRKY75 showed resistance toward salt stress, connecting abiotic and ER-stress responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Common bean (Phaseolus vulgaris L.) is a leguminous in high demand for human nutrition and a very important agricultural product. Production of common bean is constrained by environmental stresses such as drought. Although conventional plant selection has been used to increase production yield and stress tolerance, drought tolerance selection based on phenotype is complicated by associated physiological, anatomical, cellular, biochemical, and molecular changes. These changes are modulated by differential gene expression. A common method to identify genes associated with phenotypes of interest is the characterization of Single Nucleotide Polymorphims (SNPs) to link them to specific functions. In this work, we selected two drought-tolerant parental lines from Mesoamerica, Pinto Villa, and Pinto Saltillo. The parental lines were used to generate a population of 282 families (F3:5) and characterized by 169 SNPs. We associated the segregation of the molecular markers in our population with phenotypes including flowering time, physiological maturity, reproductive period, plant, seed and total biomass, reuse index, seed yield, weight of 100 seeds, and harvest index in three cultivation cycles. We observed 83 SNPs with significant association (p < 0.0003 after Bonferroni correction) with our quantified phenotypes. Phenotypes most associated were days to flowering and seed biomass with 58 and 44 associated SNPs, respectively. Thirty-seven out of the 83 SNPs were annotated to a gene with a potential function related to drought tolerance or relevant molecular/biochemical functions. Some SNPs such as SNP28 and SNP128 are related to starch biosynthesis, a common osmotic protector; and SNP18 is related to proline biosynthesis, another well-known osmotic protector.