9 resultados para false alarms

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last years significant efforts have been devoted to the development of advanced data analysis tools to both predict the occurrence of disruptions and to investigate the operational spaces of devices, with the long term goal of advancing the understanding of the physics of these events and to prepare for ITER. On JET the latest generation of the disruption predictor called APODIS has been deployed in the real time network during the last campaigns with the new metallic wall. Even if it was trained only with discharges with the carbon wall, it has reached very good performance, with both missed alarms and false alarms in the order of a few percent (and strategies to improve the performance have already been identified). Since for the optimisation of the mitigation measures, predicting also the type of disruption is considered to be also very important, a new clustering method, based on the geodesic distance on a probabilistic manifold, has been developed. This technique allows automatic classification of an incoming disruption with a success rate of better than 85%. Various other manifold learning tools, particularly Principal Component Analysis and Self Organised Maps, are also producing very interesting results in the comparative analysis of JET and ASDEX Upgrade (AUG) operational spaces, on the route to developing predictors capable of extrapolating from one device to another.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel algorithm based on bimatrix game theory has been developed to improve the accuracy and reliability of a speaker diarization system. This algorithm fuses the output data of two open-source speaker diarization programs, LIUM and SHoUT, taking advantage of the best properties of each one. The performance of this new system has been tested by means of audio streams from several movies. From preliminary results on fragments of five movies, improvements of 63% in false alarms and missed speech mistakes have been achieved with respect to LIUM and SHoUT systems working alone. Moreover, we also improve in a 20% the number of recognized speakers, getting close to the real number of speakers in the audio stream

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El objeto de esta Tesis doctoral es el desarrollo de una metodologia para la deteccion automatica de anomalias a partir de datos hiperespectrales o espectrometria de imagen, y su cartografiado bajo diferentes condiciones tipologicas de superficie y terreno. La tecnologia hiperespectral o espectrometria de imagen ofrece la posibilidad potencial de caracterizar con precision el estado de los materiales que conforman las diversas superficies en base a su respuesta espectral. Este estado suele ser variable, mientras que las observaciones se producen en un numero limitado y para determinadas condiciones de iluminacion. Al aumentar el numero de bandas espectrales aumenta tambien el numero de muestras necesarias para definir espectralmente las clases en lo que se conoce como Maldicion de la Dimensionalidad o Efecto Hughes (Bellman, 1957), muestras habitualmente no disponibles y costosas de obtener, no hay mas que pensar en lo que ello implica en la Exploracion Planetaria. Bajo la definicion de anomalia en su sentido espectral como la respuesta significativamente diferente de un pixel de imagen respecto de su entorno, el objeto central abordado en la Tesis estriba primero en como reducir la dimensionalidad de la informacion en los datos hiperespectrales, discriminando la mas significativa para la deteccion de respuestas anomalas, y segundo, en establecer la relacion entre anomalias espectrales detectadas y lo que hemos denominado anomalias informacionales, es decir, anomalias que aportan algun tipo de informacion real de las superficies o materiales que las producen. En la deteccion de respuestas anomalas se asume un no conocimiento previo de los objetivos, de tal manera que los pixeles se separan automaticamente en funcion de su informacion espectral significativamente diferenciada respecto de un fondo que se estima, bien de manera global para toda la escena, bien localmente por segmentacion de la imagen. La metodologia desarrollada se ha centrado en la implicacion de la definicion estadistica del fondo espectral, proponiendo un nuevo enfoque que permite discriminar anomalias respecto fondos segmentados en diferentes grupos de longitudes de onda del espectro, explotando la potencialidad de separacion entre el espectro electromagnetico reflectivo y emisivo. Se ha estudiado la eficiencia de los principales algoritmos de deteccion de anomalias, contrastando los resultados del algoritmo RX (Reed and Xiaoli, 1990) adoptado como estandar por la comunidad cientifica, con el metodo UTD (Uniform Targets Detector), su variante RXD-UTD, metodos basados en subespacios SSRX (Subspace RX) y metodo basados en proyecciones de subespacios de imagen, como OSPRX (Orthogonal Subspace Projection RX) y PP (Projection Pursuit). Se ha desarrollado un nuevo metodo, evaluado y contrastado por los anteriores, que supone una variacion de PP y describe el fondo espectral mediante el analisis discriminante de bandas del espectro electromagnetico, separando las anomalias con el algortimo denominado Detector de Anomalias de Fondo Termico o DAFT aplicable a sensores que registran datos en el espectro emisivo. Se han evaluado los diferentes metodos de deteccion de anomalias en rangos del espectro electromagnetico del visible e infrarrojo cercano (Visible and Near Infrared-VNIR), infrarrojo de onda corta (Short Wavelenght Infrared-SWIR), infrarrojo medio (Meadle Infrared-MIR) e infrarrojo termico (Thermal Infrared-TIR). La respuesta de las superficies en las distintas longitudes de onda del espectro electromagnetico junto con su entorno, influyen en el tipo y frecuencia de las anomalias espectrales que puedan provocar. Es por ello que se han utilizado en la investigacion cubos de datos hiperepectrales procedentes de los sensores aeroportados cuya estrategia y diseno en la construccion espectrometrica de la imagen difiere. Se han evaluado conjuntos de datos de test de los sensores AHS (Airborne Hyperspectral System), HyMAP Imaging Spectrometer, CASI (Compact Airborne Spectrographic Imager), AVIRIS (Airborne Visible Infrared Imaging Spectrometer), HYDICE (Hyperspectral Digital Imagery Collection Experiment) y MASTER (MODIS/ASTER Simulator). Se han disenado experimentos sobre ambitos naturales, urbanos y semiurbanos de diferente complejidad. Se ha evaluado el comportamiento de los diferentes detectores de anomalias a traves de 23 tests correspondientes a 15 areas de estudio agrupados en 6 espacios o escenarios: Urbano - E1, Semiurbano/Industrial/Periferia Urbana - E2, Forestal - E3, Agricola - E4, Geologico/Volcanico - E5 y Otros Espacios Agua, Nubes y Sombras - E6. El tipo de sensores evaluados se caracteriza por registrar imagenes en un amplio rango de bandas, estrechas y contiguas, del espectro electromagnetico. La Tesis se ha centrado en el desarrollo de tecnicas que permiten separar y extraer automaticamente pixeles o grupos de pixeles cuya firma espectral difiere de manera discriminante de las que tiene alrededor, adoptando para ello como espacio muestral parte o el conjunto de las bandas espectrales en las que ha registrado radiancia el sensor hiperespectral. Un factor a tener en cuenta en la investigacion ha sido el propio instrumento de medida, es decir, la caracterizacion de los distintos subsistemas, sensores imagen y auxiliares, que intervienen en el proceso. Para poder emplear cuantitativamente los datos medidos ha sido necesario definir las relaciones espaciales y espectrales del sensor con la superficie observada y las potenciales anomalias y patrones objetivos de deteccion. Se ha analizado la repercusion que en la deteccion de anomalias tiene el tipo de sensor, tanto en su configuracion espectral como en las estrategias de diseno a la hora de registrar la radiacion prodecente de las superficies, siendo los dos tipos principales de sensores estudiados los barredores o escaneres de espejo giratorio (whiskbroom) y los barredores o escaneres de empuje (pushbroom). Se han definido distintos escenarios en la investigacion, lo que ha permitido abarcar una amplia variabilidad de entornos geomorfologicos y de tipos de coberturas, en ambientes mediterraneos, de latitudes medias y tropicales. En resumen, esta Tesis presenta una tecnica de deteccion de anomalias para datos hiperespectrales denominada DAFT en su variante de PP, basada en una reduccion de la dimensionalidad proyectando el fondo en un rango de longitudes de onda del espectro termico distinto de la proyeccion de las anomalias u objetivos sin firma espectral conocida. La metodologia propuesta ha sido probada con imagenes hiperespectrales reales de diferentes sensores y en diferentes escenarios o espacios, por lo tanto de diferente fondo espectral tambien, donde los resultados muestran los beneficios de la aproximacion en la deteccion de una gran variedad de objetos cuyas firmas espectrales tienen suficiente desviacion respecto del fondo. La tecnica resulta ser automatica en el sentido de que no hay necesidad de ajuste de parametros, dando resultados significativos en todos los casos. Incluso los objetos de tamano subpixel, que no pueden distinguirse a simple vista por el ojo humano en la imagen original, pueden ser detectados como anomalias. Ademas, se realiza una comparacion entre el enfoque propuesto, la popular tecnica RX y otros detectores tanto en su modalidad global como local. El metodo propuesto supera a los demas en determinados escenarios, demostrando su capacidad para reducir la proporcion de falsas alarmas. Los resultados del algoritmo automatico DAFT desarrollado, han demostrado la mejora en la definicion cualitativa de las anomalias espectrales que identifican a entidades diferentes en o bajo superficie, reemplazando para ello el modelo clasico de distribucion normal con un metodo robusto que contempla distintas alternativas desde el momento mismo de la adquisicion del dato hiperespectral. Para su consecucion ha sido necesario analizar la relacion entre parametros biofisicos, como la reflectancia y la emisividad de los materiales, y la distribucion espacial de entidades detectadas respecto de su entorno. Por ultimo, el algoritmo DAFT ha sido elegido como el mas adecuado para sensores que adquieren datos en el TIR, ya que presenta el mejor acuerdo con los datos de referencia, demostrando una gran eficacia computacional que facilita su implementacion en un sistema de cartografia que proyecte de forma automatica en un marco geografico de referencia las anomalias detectadas, lo que confirma un significativo avance hacia un sistema en lo que se denomina cartografia en tiempo real. The aim of this Thesis is to develop a specific methodology in order to be applied in automatic detection anomalies processes using hyperspectral data also called hyperspectral scenes, and to improve the classification processes. Several scenarios, areas and their relationship with surfaces and objects have been tested. The spectral characteristics of reflectance parameter and emissivity in the pattern recognition of urban materials in several hyperspectral scenes have also been tested. Spectral ranges of the visible-near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) from hyperspectral data cubes of AHS (Airborne Hyperspectral System), HyMAP Imaging Spectrometer, CASI (Compact Airborne Spectrographic Imager), AVIRIS (Airborne Visible Infrared Imaging Spectrometer), HYDICE (Hyperspectral Digital Imagery Collection Experiment) and MASTER (MODIS/ASTER Simulator) have been used in this research. It is assumed that there is not prior knowledge of the targets in anomaly detection. Thus, the pixels are automatically separated according to their spectral information, significantly differentiated with respect to a background, either globally for the full scene, or locally by the image segmentation. Several experiments on different scenarios have been designed, analyzing the behavior of the standard RX anomaly detector and different methods based on subspace, image projection and segmentation-based anomaly detection methods. Results and their consequences in unsupervised classification processes are discussed. Detection of spectral anomalies aims at extracting automatically pixels that show significant responses in relation of their surroundings. This Thesis deals with the unsupervised technique of target detection, also called anomaly detection. Since this technique assumes no prior knowledge about the target or the statistical characteristics of the data, the only available option is to look for objects that are differentiated from the background. Several methods have been developed in the last decades, allowing a better understanding of the relationships between the image dimensionality and the optimization of search procedures as well as the subpixel differentiation of the spectral mixture and its implications in anomalous responses. In other sense, image spectrometry has proven to be efficient in the characterization of materials, based on statistical methods using a specific reflection and absorption bands. Spectral configurations in the VNIR, SWIR and TIR have been successfully used for mapping materials in different urban scenarios. There has been an increasing interest in the use of high resolution data (both spatial and spectral) to detect small objects and to discriminate surfaces in areas with urban complexity. This has come to be known as target detection which can be either supervised or unsupervised. In supervised target detection, algorithms lean on prior knowledge, such as the spectral signature. The detection process for matching signatures is not straightforward due to the complications of converting data airborne sensor with material spectra in the ground. This could be further complicated by the large number of possible objects of interest, as well as uncertainty as to the reflectance or emissivity of these objects and surfaces. An important objective in this research is to establish relationships that allow linking spectral anomalies with what can be called informational anomalies and, therefore, identify information related to anomalous responses in some places rather than simply spotting differences from the background. The development in recent years of new hyperspectral sensors and techniques, widen the possibilities for applications in remote sensing of the Earth. Remote sensing systems measure and record electromagnetic disturbances that the surveyed objects induce in their surroundings, by means of different sensors mounted on airborne or space platforms. Map updating is important for management and decisions making people, because of the fast changes that usually happen in natural, urban and semi urban areas. It is necessary to optimize the methodology for obtaining the best from remote sensing techniques from hyperspectral data. The first problem with hyperspectral data is to reduce the dimensionality, keeping the maximum amount of information. Hyperspectral sensors augment considerably the amount of information, this allows us to obtain a better precision on the separation of material but at the same time it is necessary to calculate a bigger number of parameters, and the precision lowers with the increase in the number of bands. This is known as the Hughes effects (Bellman, 1957) . Hyperspectral imagery allows us to discriminate between a huge number of different materials however some land and urban covers are made up with similar material and respond similarly which produces confusion in the classification. The training and the algorithm used for mapping are also important for the final result and some properties of thermal spectrum for detecting land cover will be studied. In summary, this Thesis presents a new technique for anomaly detection in hyperspectral data called DAFT, as a PP's variant, based on dimensionality reduction by projecting anomalies or targets with unknown spectral signature to the background, in a range thermal spectrum wavelengths. The proposed methodology has been tested with hyperspectral images from different imaging spectrometers corresponding to several places or scenarios, therefore with different spectral background. The results show the benefits of the approach to the detection of a variety of targets whose spectral signatures have sufficient deviation in relation to the background. DAFT is an automated technique in the sense that there is not necessary to adjust parameters, providing significant results in all cases. Subpixel anomalies which cannot be distinguished by the human eye, on the original image, however can be detected as outliers due to the projection of the VNIR end members with a very strong thermal contrast. Furthermore, a comparison between the proposed approach and the well-known RX detector is performed at both modes, global and local. The proposed method outperforms the existents in particular scenarios, demonstrating its performance to reduce the probability of false alarms. The results of the automatic algorithm DAFT have demonstrated improvement in the qualitative definition of the spectral anomalies by replacing the classical model by the normal distribution with a robust method. For their achievement has been necessary to analyze the relationship between biophysical parameters such as reflectance and emissivity, and the spatial distribution of detected entities with respect to their environment, as for example some buried or semi-buried materials, or building covers of asbestos, cellular polycarbonate-PVC or metal composites. Finally, the DAFT method has been chosen as the most suitable for anomaly detection using imaging spectrometers that acquire them in the thermal infrared spectrum, since it presents the best results in comparison with the reference data, demonstrating great computational efficiency that facilitates its implementation in a mapping system towards, what is called, Real-Time Mapping.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a new method is presented to ensure automatic synchronization of intracardiac ECG data, yielding a three-stage algorithm. We first compute a robust estimate of the derivative of the data to remove low-frequency perturbations. Then we provide a grouped-sparse representation of the data, by means of the Group LASSO, to ensure that all the electrical spikes are simultaneously detected. Finally, a post-processing step, based on a variance analysis, is performed to discard false alarms. Preliminary results on real data for sinus rhythm and atrial fibrillation show the potential of this approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tesis aborda metodologías para el cálculo de riesgo de colisión de satélites. La minimización del riesgo de colisión se debe abordar desde dos puntos de vista distintos. Desde el punto de vista operacional, es necesario filtrar los objetos que pueden presentar un encuentro entre todos los objetos que comparten el espacio con un satélite operacional. Puesto que las órbitas, del objeto operacional y del objeto envuelto en la colisión, no se conocen perfectamente, la geometría del encuentro y el riesgo de colisión deben ser evaluados. De acuerdo con dicha geometría o riesgo, una maniobra evasiva puede ser necesaria para evitar la colisión. Dichas maniobras implican un consumo de combustible que impacta en la capacidad de mantenimiento orbital y por tanto de la visa útil del satélite. Por tanto, el combustible necesario a lo largo de la vida útil de un satélite debe ser estimado en fase de diseño de la misión para una correcta definición de su vida útil, especialmente para satélites orbitando en regímenes orbitales muy poblados. Los dos aspectos, diseño de misión y aspectos operacionales en relación con el riesgo de colisión están abordados en esta tesis y se resumen en la Figura 3. En relación con los aspectos relacionados con el diseño de misión (parte inferior de la figura), es necesario evaluar estadísticamente las características de de la población espacial y las teorías que permiten calcular el número medio de eventos encontrados por una misión y su capacidad de reducir riesgo de colisión. Estos dos aspectos definen los procedimientos más apropiados para reducir el riesgo de colisión en fase operacional. Este aspecto es abordado, comenzando por la teoría descrita en [Sánchez-Ortiz, 2006]T.14 e implementada por el autor de esta tesis en la herramienta ARES [Sánchez-Ortiz, 2004b]T.15 proporcionada por ESA para la evaluación de estrategias de evitación de colisión. Esta teoría es extendida en esta tesis para considerar las características de los datos orbitales disponibles en las fases operacionales de un satélite (sección 4.3.3). Además, esta teoría se ha extendido para considerar riesgo máximo de colisión cuando la incertidumbre de las órbitas de objetos catalogados no es conocida (como se da el caso para los TLE), y en el caso de querer sólo considerar riesgo de colisión catastrófico (sección 4.3.2.3). Dichas mejoras se han incluido en la nueva versión de ARES [Domínguez-González and Sánchez-Ortiz, 2012b]T.12 puesta a disposición a través de [SDUP,2014]R.60. En fase operacional, los catálogos que proporcionan datos orbitales de los objetos espaciales, son procesados rutinariamente, para identificar posibles encuentros que se analizan en base a algoritmos de cálculo de riesgo de colisión para proponer maniobras de evasión. Actualmente existe una única fuente de datos públicos, el catálogo TLE (de sus siglas en inglés, Two Line Elements). Además, el Joint Space Operation Center (JSpOC) Americano proporciona mensajes con alertas de colisión (CSM) cuando el sistema de vigilancia americano identifica un posible encuentro. En función de los datos usados en fase operacional (TLE o CSM), la estrategia de evitación puede ser diferente debido a las características de dicha información. Es preciso conocer las principales características de los datos disponibles (respecto a la precisión de los datos orbitales) para estimar los posibles eventos de colisión encontrados por un satélite a lo largo de su vida útil. En caso de los TLE, cuya precisión orbital no es proporcionada, la información de precisión orbital derivada de un análisis estadístico se puede usar también en el proceso operacional así como en el diseño de la misión. En caso de utilizar CSM como base de las operaciones de evitación de colisiones, se conoce la precisión orbital de los dos objetos involucrados. Estas características se han analizado en detalle, evaluando estadísticamente las características de ambos tipos de datos. Una vez concluido dicho análisis, se ha analizado el impacto de utilizar TLE o CSM en las operaciones del satélite (sección 5.1). Este análisis se ha publicado en una revista especializada [Sánchez-Ortiz, 2015b]T.3. En dicho análisis, se proporcionan recomendaciones para distintas misiones (tamaño del satélite y régimen orbital) en relación con las estrategias de evitación de colisión para reducir el riesgo de colisión de manera significativa. Por ejemplo, en el caso de un satélite en órbita heliosíncrona en régimen orbital LEO, el valor típico del ACPL que se usa de manera extendida es 10-4. Este valor no es adecuado cuando los esquemas de evitación de colisión se realizan sobre datos TLE. En este caso, la capacidad de reducción de riesgo es prácticamente nula (debido a las grandes incertidumbres de los datos TLE) incluso para tiempos cortos de predicción. Para conseguir una reducción significativa del riesgo, sería necesario usar un ACPL en torno a 10-6 o inferior, produciendo unas 10 alarmas al año por satélite (considerando predicciones a un día) o 100 alarmas al año (con predicciones a tres días). Por tanto, la principal conclusión es la falta de idoneidad de los datos TLE para el cálculo de eventos de colisión. Al contrario, usando los datos CSM, debido a su mejor precisión orbital, se puede obtener una reducción significativa del riesgo con ACPL en torno a 10-4 (considerando 3 días de predicción). Incluso 5 días de predicción pueden ser considerados con ACPL en torno a 10-5. Incluso tiempos de predicción más largos se pueden usar (7 días) con reducción del 90% del riesgo y unas 5 alarmas al año (en caso de predicciones de 5 días, el número de maniobras se mantiene en unas 2 al año). La dinámica en GEO es diferente al caso LEO y hace que el crecimiento de las incertidumbres orbitales con el tiempo de propagación sea menor. Por el contrario, las incertidumbres derivadas de la determinación orbital son peores que en LEO por las diferencias en las capacidades de observación de uno y otro régimen orbital. Además, se debe considerar que los tiempos de predicción considerados para LEO pueden no ser apropiados para el caso de un satélite GEO (puesto que tiene un periodo orbital mayor). En este caso usando datos TLE, una reducción significativa del riesgo sólo se consigue con valores pequeños de ACPL, produciendo una alarma por año cuando los eventos de colisión se predicen a un día vista (tiempo muy corto para implementar maniobras de evitación de colisión).Valores más adecuados de ACPL se encuentran entre 5•10-8 y 10-7, muy por debajo de los valores usados en las operaciones actuales de la mayoría de las misiones GEO (de nuevo, no se recomienda en este régimen orbital basar las estrategias de evitación de colisión en TLE). Los datos CSM permiten una reducción de riesgo apropiada con ACPL entre 10-5 y 10-4 con tiempos de predicción cortos y medios (10-5 se recomienda para predicciones a 5 o 7 días). El número de maniobras realizadas sería una en 10 años de misión. Se debe notar que estos cálculos están realizados para un satélite de unos 2 metros de radio. En el futuro, otros sistemas de vigilancia espacial (como el programa SSA de la ESA), proporcionarán catálogos adicionales de objetos espaciales con el objetivo de reducir el riesgo de colisión de los satélites. Para definir dichos sistemas de vigilancia, es necesario identificar las prestaciones del catalogo en función de la reducción de riesgo que se pretende conseguir. Las características del catálogo que afectan principalmente a dicha capacidad son la cobertura (número de objetos incluidos en el catalogo, limitado principalmente por el tamaño mínimo de los objetos en función de las limitaciones de los sensores utilizados) y la precisión de los datos orbitales (derivada de las prestaciones de los sensores en relación con la precisión de las medidas y la capacidad de re-observación de los objetos). El resultado de dicho análisis (sección 5.2) se ha publicado en una revista especializada [Sánchez-Ortiz, 2015a]T.2. Este análisis no estaba inicialmente previsto durante la tesis, y permite mostrar como la teoría descrita en esta tesis, inicialmente definida para facilitar el diseño de misiones (parte superior de la figura 1) se ha extendido y se puede aplicar para otros propósitos como el dimensionado de un sistema de vigilancia espacial (parte inferior de la figura 1). La principal diferencia de los dos análisis se basa en considerar las capacidades de catalogación (precisión y tamaño de objetos observados) como una variable a modificar en el caso de un diseño de un sistema de vigilancia), siendo fijas en el caso de un diseño de misión. En el caso de las salidas generadas en el análisis, todos los aspectos calculados en un análisis estadístico de riesgo de colisión son importantes para diseño de misión (con el objetivo de calcular la estrategia de evitación y la cantidad de combustible a utilizar), mientras que en el caso de un diseño de un sistema de vigilancia, los aspectos más importantes son el número de maniobras y falsas alarmas (fiabilidad del sistema) y la capacidad de reducción de riesgo (efectividad del sistema). Adicionalmente, un sistema de vigilancia espacial debe ser caracterizado por su capacidad de evitar colisiones catastróficas (evitando así in incremento dramático de la población de basura espacial), mientras que el diseño de una misión debe considerar todo tipo de encuentros, puesto que un operador está interesado en evitar tanto las colisiones catastróficas como las letales. Del análisis de las prestaciones (tamaño de objetos a catalogar y precisión orbital) requeridas a un sistema de vigilancia espacial se concluye que ambos aspectos han de ser fijados de manera diferente para los distintos regímenes orbitales. En el caso de LEO se hace necesario observar objetos de hasta 5cm de radio, mientras que en GEO se rebaja este requisito hasta los 100 cm para cubrir las colisiones catastróficas. La razón principal para esta diferencia viene de las diferentes velocidades relativas entre los objetos en ambos regímenes orbitales. En relación con la precisión orbital, ésta ha de ser muy buena en LEO para poder reducir el número de falsas alarmas, mientras que en regímenes orbitales más altos se pueden considerar precisiones medias. En relación con los aspectos operaciones de la determinación de riesgo de colisión, existen varios algoritmos de cálculo de riesgo entre dos objetos espaciales. La Figura 2 proporciona un resumen de los casos en cuanto a algoritmos de cálculo de riesgo de colisión y como se abordan en esta tesis. Normalmente se consideran objetos esféricos para simplificar el cálculo de riesgo (caso A). Este caso está ampliamente abordado en la literatura y no se analiza en detalle en esta tesis. Un caso de ejemplo se proporciona en la sección 4.2. Considerar la forma real de los objetos (caso B) permite calcular el riesgo de una manera más precisa. Un nuevo algoritmo es definido en esta tesis para calcular el riesgo de colisión cuando al menos uno de los objetos se considera complejo (sección 4.4.2). Dicho algoritmo permite calcular el riesgo de colisión para objetos formados por un conjunto de cajas, y se ha presentado en varias conferencias internacionales. Para evaluar las prestaciones de dicho algoritmo, sus resultados se han comparado con un análisis de Monte Carlo que se ha definido para considerar colisiones entre cajas de manera adecuada (sección 4.1.2.3), pues la búsqueda de colisiones simples aplicables para objetos esféricos no es aplicable a este caso. Este análisis de Monte Carlo se considera la verdad a la hora de calcular los resultados del algoritmos, dicha comparativa se presenta en la sección 4.4.4. En el caso de satélites que no se pueden considerar esféricos, el uso de un modelo de la geometría del satélite permite descartar eventos que no son colisiones reales o estimar con mayor precisión el riesgo asociado a un evento. El uso de estos algoritmos con geometrías complejas es más relevante para objetos de dimensiones grandes debido a las prestaciones de precisión orbital actuales. En el futuro, si los sistemas de vigilancia mejoran y las órbitas son conocidas con mayor precisión, la importancia de considerar la geometría real de los satélites será cada vez más relevante. La sección 5.4 presenta un ejemplo para un sistema de grandes dimensiones (satélite con un tether). Adicionalmente, si los dos objetos involucrados en la colisión tienen velocidad relativa baja (y geometría simple, Caso C en la Figura 2), la mayor parte de los algoritmos no son aplicables requiriendo implementaciones dedicadas para este caso particular. En esta tesis, uno de estos algoritmos presentado en la literatura [Patera, 2001]R.26 se ha analizado para determinar su idoneidad en distintos tipos de eventos (sección 4.5). La evaluación frete a un análisis de Monte Carlo se proporciona en la sección 4.5.2. Tras este análisis, se ha considerado adecuado para abordar las colisiones de baja velocidad. En particular, se ha concluido que el uso de algoritmos dedicados para baja velocidad son necesarios en función del tamaño del volumen de colisión proyectado en el plano de encuentro (B-plane) y del tamaño de la incertidumbre asociada al vector posición entre los dos objetos. Para incertidumbres grandes, estos algoritmos se hacen más necesarios pues la duración del intervalo en que los elipsoides de error de los dos objetos pueden intersecar es mayor. Dicho algoritmo se ha probado integrando el algoritmo de colisión para objetos con geometrías complejas. El resultado de dicho análisis muestra que este algoritmo puede ser extendido fácilmente para considerar diferentes tipos de algoritmos de cálculo de riesgo de colisión (sección 4.5.3). Ambos algoritmos, junto con el método Monte Carlo para geometrías complejas, se han implementado en la herramienta operacional de la ESA CORAM, que es utilizada para evaluar el riesgo de colisión en las actividades rutinarias de los satélites operados por ESA [Sánchez-Ortiz, 2013a]T.11. Este hecho muestra el interés y relevancia de los algoritmos desarrollados para la mejora de las operaciones de los satélites. Dichos algoritmos han sido presentados en varias conferencias internacionales [Sánchez-Ortiz, 2013b]T.9, [Pulido, 2014]T.7,[Grande-Olalla, 2013]T.10, [Pulido, 2014]T.5, [Sánchez-Ortiz, 2015c]T.1. ABSTRACT This document addresses methodologies for computation of the collision risk of a satellite. Two different approaches need to be considered for collision risk minimisation. On an operational basis, it is needed to perform a sieve of possible objects approaching the satellite, among all objects sharing the space with an operational satellite. As the orbits of both, satellite and the eventual collider, are not perfectly known but only estimated, the miss-encounter geometry and the actual risk of collision shall be evaluated. In the basis of the encounter geometry or the risk, an eventual manoeuvre may be required to avoid the conjunction. Those manoeuvres will be associated to a reduction in the fuel for the mission orbit maintenance, and thus, may reduce the satellite operational lifetime. Thus, avoidance manoeuvre fuel budget shall be estimated, at mission design phase, for a better estimation of mission lifetime, especially for those satellites orbiting in very populated orbital regimes. These two aspects, mission design and operational collision risk aspects, are summarised in Figure 3, and covered along this thesis. Bottom part of the figure identifies the aspects to be consider for the mission design phase (statistical characterisation of the space object population data and theory computing the mean number of events and risk reduction capability) which will define the most appropriate collision avoidance approach at mission operational phase. This part is covered in this work by starting from the theory described in [Sánchez-Ortiz, 2006]T.14 and implemented by this author in ARES tool [Sánchez-Ortiz, 2004b]T.15 provided by ESA for evaluation of collision avoidance approaches. This methodology has been now extended to account for the particular features of the available data sets in operational environment (section 4.3.3). Additionally, the formulation has been extended to allow evaluating risk computation approached when orbital uncertainty is not available (like the TLE case) and when only catastrophic collisions are subject to study (section 4.3.2.3). These improvements to the theory have been included in the new version of ESA ARES tool [Domínguez-González and Sánchez-Ortiz, 2012b]T.12 and available through [SDUP,2014]R.60. At the operation phase, the real catalogue data will be processed on a routine basis, with adequate collision risk computation algorithms to propose conjunction avoidance manoeuvre optimised for every event. The optimisation of manoeuvres in an operational basis is not approached along this document. Currently, American Two Line Element (TLE) catalogue is the only public source of data providing orbits of objects in space to identify eventual conjunction events. Additionally, Conjunction Summary Message (CSM) is provided by Joint Space Operation Center (JSpOC) when the American system identifies a possible collision among satellites and debris. Depending on the data used for collision avoidance evaluation, the conjunction avoidance approach may be different. The main features of currently available data need to be analysed (in regards to accuracy) in order to perform estimation of eventual encounters to be found along the mission lifetime. In the case of TLE, as these data is not provided with accuracy information, operational collision avoidance may be also based on statistical accuracy information as the one used in the mission design approach. This is not the case for CSM data, which includes the state vector and orbital accuracy of the two involved objects. This aspect has been analysed in detail and is depicted in the document, evaluating in statistical way the characteristics of both data sets in regards to the main aspects related to collision avoidance. Once the analysis of data set was completed, investigations on the impact of those features in the most convenient avoidance approaches have been addressed (section 5.1). This analysis is published in a peer-reviewed journal [Sánchez-Ortiz, 2015b]T.3. The analysis provides recommendations for different mission types (satellite size and orbital regime) in regards to the most appropriate collision avoidance approach for relevant risk reduction. The risk reduction capability is very much dependent on the accuracy of the catalogue utilized to identify eventual collisions. Approaches based on CSM data are recommended against the TLE based approach. Some approaches based on the maximum risk associated to envisaged encounters are demonstrated to report a very large number of events, which makes the approach not suitable for operational activities. Accepted Collision Probability Levels are recommended for the definition of the avoidance strategies for different mission types. For example for the case of a LEO satellite in the Sun-synchronous regime, the typically used ACPL value of 10-4 is not a suitable value for collision avoidance schemes based on TLE data. In this case the risk reduction capacity is almost null (due to the large uncertainties associated to TLE data sets, even for short time-to-event values). For significant reduction of risk when using TLE data, ACPL on the order of 10-6 (or lower) seems to be required, producing about 10 warnings per year and mission (if one-day ahead events are considered) or 100 warnings per year (for three-days ahead estimations). Thus, the main conclusion from these results is the lack of feasibility of TLE for a proper collision avoidance approach. On the contrary, for CSM data, and due to the better accuracy of the orbital information when compared with TLE, ACPL on the order of 10-4 allows to significantly reduce the risk. This is true for events estimated up to 3 days ahead. Even 5 days ahead events can be considered, but ACPL values down to 10-5 should be considered in such case. Even larger prediction times can be considered (7 days) for risk reduction about 90%, at the cost of larger number of warnings up to 5 events per year, when 5 days prediction allows to keep the manoeuvre rate in 2 manoeuvres per year. Dynamics of the GEO orbits is different to that in LEO, impacting on a lower increase of orbits uncertainty along time. On the contrary, uncertainties at short prediction times at this orbital regime are larger than those at LEO due to the differences in observation capabilities. Additionally, it has to be accounted that short prediction times feasible at LEO may not be appropriate for a GEO mission due to the orbital period being much larger at this regime. In the case of TLE data sets, significant reduction of risk is only achieved for small ACPL values, producing about a warning event per year if warnings are raised one day in advance to the event (too short for any reaction to be considered). Suitable ACPL values would lay in between 5•10-8 and 10-7, well below the normal values used in current operations for most of the GEO missions (TLE-based strategies for collision avoidance at this regime are not recommended). On the contrary, CSM data allows a good reduction of risk with ACPL in between 10-5 and 10-4 for short and medium prediction times. 10-5 is recommended for prediction times of five or seven days. The number of events raised for a suitable warning time of seven days would be about one in a 10-year mission. It must be noted, that these results are associated to a 2 m radius spacecraft, impact of the satellite size are also analysed within the thesis. In the future, other Space Situational Awareness Systems (SSA, ESA program) may provide additional catalogues of objects in space with the aim of reducing the risk. It is needed to investigate which are the required performances of those catalogues for allowing such risk reduction. The main performance aspects are coverage (objects included in the catalogue, mainly limited by a minimum object size derived from sensor performances) and the accuracy of the orbital data to accurately evaluate the conjunctions (derived from sensor performance in regards to object observation frequency and accuracy). The results of these investigations (section 5.2) are published in a peer-reviewed journal [Sánchez-Ortiz, 2015a]T.2. This aspect was not initially foreseen as objective of the thesis, but it shows how the theory described in the thesis, initially defined for mission design in regards to avoidance manoeuvre fuel allocation (upper part of figure 1), is extended and serves for additional purposes as dimensioning a Space Surveillance and Tracking (SST) system (bottom part of figure below). The main difference between the two approaches is the consideration of the catalogue features as part of the theory which are not modified (for the satellite mission design case) instead of being an input for the analysis (in the case of the SST design). In regards to the outputs, all the features computed by the statistical conjunction analysis are of importance for mission design (with the objective of proper global avoidance strategy definition and fuel allocation), whereas for the case of SST design, the most relevant aspects are the manoeuvre and false alarm rates (defining a reliable system) and the Risk Reduction capability (driving the effectiveness of the system). In regards to the methodology for computing the risk, the SST system shall be driven by the capacity of providing the means to avoid catastrophic conjunction events (avoiding the dramatic increase of the population), whereas the satellite mission design should consider all type of encounters, as the operator is interested on avoiding both lethal and catastrophic collisions. From the analysis of the SST features (object coverage and orbital uncertainty) for a reliable system, it is concluded that those two characteristics are to be imposed differently for the different orbital regimes, as the population level is different depending on the orbit type. Coverage values range from 5 cm for very populated LEO regime up to 100 cm in the case of GEO region. The difference on this requirement derives mainly from the relative velocity of the encounters at those regimes. Regarding the orbital knowledge of the catalogues, very accurate information is required for objects in the LEO region in order to limit the number of false alarms, whereas intermediate orbital accuracy can be considered for higher orbital regimes. In regards to the operational collision avoidance approaches, several collision risk algorithms are used for evaluation of collision risk of two pair of objects. Figure 2 provides a summary of the different collision risk algorithm cases and indicates how they are covered along this document. The typical case with high relative velocity is well covered in literature for the case of spherical objects (case A), with a large number of available algorithms, that are not analysed in detailed in this work. Only a sample case is provided in section 4.2. If complex geometries are considered (Case B), a more realistic risk evaluation can be computed. New approach for the evaluation of risk in the case of complex geometries is presented in this thesis (section 4.4.2), and it has been presented in several international conferences. The developed algorithm allows evaluating the risk for complex objects formed by a set of boxes. A dedicated Monte Carlo method has also been described (section 4.1.2.3) and implemented to allow the evaluation of the actual collisions among a large number of simulation shots. This Monte Carlo runs are considered the truth for comparison of the algorithm results (section 4.4.4). For spacecrafts that cannot be considered as spheres, the consideration of the real geometry of the objects may allow to discard events which are not real conjunctions, or estimate with larger reliability the risk associated to the event. This is of particular importance for the case of large spacecrafts as the uncertainty in positions of actual catalogues does not reach small values to make a difference for the case of objects below meter size. As the tracking systems improve and the orbits of catalogued objects are known more precisely, the importance of considering actual shapes of the objects will become more relevant. The particular case of a very large system (as a tethered satellite) is analysed in section 5.4. Additionally, if the two colliding objects have low relative velocity (and simple geometries, case C in figure above), the most common collision risk algorithms fail and adequate theories need to be applied. In this document, a low relative velocity algorithm presented in the literature [Patera, 2001]R.26 is described and evaluated (section 4.5). Evaluation through comparison with Monte Carlo approach is provided in section 4.5.2. The main conclusion of this analysis is the suitability of this algorithm for the most common encounter characteristics, and thus it is selected as adequate for collision risk estimation. Its performances are evaluated in order to characterise when it can be safely used for a large variety of encounter characteristics. In particular, it is found that the need of using dedicated algorithms depend on both the size of collision volume in the B-plane and the miss-distance uncertainty. For large uncertainties, the need of such algorithms is more relevant since for small uncertainties the encounter duration where the covariance ellipsoids intersect is smaller. Additionally, its application for the case of complex satellite geometries is assessed (case D in figure above) by integrating the developed algorithm in this thesis with Patera’s formulation for low relative velocity encounters. The results of this analysis show that the algorithm can be easily extended for collision risk estimation process suitable for complex geometry objects (section 4.5.3). The two algorithms, together with the Monte Carlo method, have been implemented in the operational tool CORAM for ESA which is used for the evaluation of collision risk of ESA operated missions, [Sánchez-Ortiz, 2013a]T.11. This fact shows the interest and relevance of the developed algorithms for improvement of satellite operations. The algorithms have been presented in several international conferences, [Sánchez-Ortiz, 2013b]T.9, [Pulido, 2014]T.7,[Grande-Olalla, 2013]T.10, [Pulido, 2014]T.5, [Sánchez-Ortiz, 2015c]T.1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La teoría de reconocimiento y clasificación de patrones y el aprendizaje automático son actualmente áreas de conocimiento en constante desarrollo y con aplicaciones prácticas en múltiples ámbitos de la industria. El propósito de este Proyecto de Fin de Grado es el estudio de las mismas así como la implementación de un sistema software que dé solución a un problema de clasificación de ruido impulsivo, concretamente mediante el desarrollo de un sistema de seguridad basado en la clasificación de eventos sonoros en tiempo real. La solución será integral, comprendiendo todas las fases del proceso, desde la captación de sonido hasta el etiquetado de los eventos registrados, pasando por el procesado digital de señal y la extracción de características. Para su desarrollo se han diferenciado dos partes fundamentales; una primera que comprende la interfaz de usuario y el procesado de la señal de audio donde se desarrollan las labores de monitorización y detección de ruido impulsivo y otra segunda centrada únicamente en la clasificación de los eventos sonoros detectados, definiendo una arquitectura de doble clasificador donde se determina si los eventos detectados son falsas alarmas o amenazas, etiquetándolos como de un tipo concreto en este segundo caso. Los resultados han sido satisfactorios, mostrando una fiabilidad global en el proceso de entorno al 90% a pesar de algunas limitaciones a la hora de construir la base de datos de archivos de audio, lo que prueba que un dispositivo de seguridad basado en el análisis de ruido ambiente podría incluirse en un sistema integral de alarma doméstico aumentando la protección del hogar. ABSTRACT. Pattern classification and machine learning are currently expertise areas under continuous development and also with extensive applications in many business sectors. The aim of this Final Degree Project is to study them as well as the implementation of software to carry on impulsive noise classification tasks, particularly through the development of a security system based on sound events classification. The solution will go over all process stages, from capturing sound to the labelling of the events recorded, without forgetting digital signal processing and feature extraction, everything in real time. In the development of the Project a distinction has been made between two main parts. The first one comprises the user’s interface and the audio signal processing module, where monitoring and impulsive noise detection tasks take place. The second one is focussed in sound events classification tasks, defining a double classifier architecture where it is determined whether detected events are false alarms or threats, labelling them from a concrete category in the latter case. The obtained results have been satisfactory, with an overall reliability of 90% despite some limitations when building the audio files database. This proves that a safety device based on the analysis of environmental noise could be included in a full alarm system increasing home protection standards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of disruptions in JET became even more important with the replacement of the previous Carbon Fiber Composite (CFC) wall with a more fragile full metal ITER-like wall (ILW). The development of robust disruption mitigation systems is crucial for JET (and also for ITER). Moreover, a reliable real-time (RT) disruption predictor is a pre-requisite to any mitigation method. The Advance Predictor Of DISruptions (APODIS) has been installed in the JET Real-Time Data Network (RTDN) for the RT recognition of disruptions. The predictor operates with the new ILW but it has been trained only with discharges belonging to campaigns with the CFC wall. 7 realtime signals are used to characterize the plasma status (disruptive or non-disruptive) at regular intervals of 1 ms. After the first 3 JET ILW campaigns (991 discharges), the success rate of the predictor is 98.36% (alarms are triggered in average 426 ms before the disruptions). The false alarm and missed alarm rates are 0.92% and 1.64%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been demonstrated that rating trust and reputation of individual nodes is an effective approach in distributed environments in order to improve security, support decision-making and promote node collaboration. Nevertheless, these systems are vulnerable to deliberate false or unfair testimonies. In one scenario, the attackers collude to give negative feedback on the victim in order to lower or destroy its reputation. This attack is known as bad mouthing attack. In another scenario, a number of entities agree to give positive feedback on an entity (often with adversarial intentions). This attack is known as ballot stuffing. Both attack types can significantly deteriorate the performances of the network. The existing solutions for coping with these attacks are mainly concentrated on prevention techniques. In this work, we propose a solution that detects and isolates the abovementioned attackers, impeding them in this way to further spread their malicious activity. The approach is based on detecting outliers using clustering, in this case self-organizing maps. An important advantage of this approach is that we have no restrictions on training data, and thus there is no need for any data pre-processing. Testing results demonstrate the capability of the approach in detecting both bad mouthing and ballot stuffing attack in various scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article explores one aspect of the processing perspective in L2 learning in an EST context: the processing of new content words, in English, of the type ‘cognates’ and ‘false friends’, by Spanish speaking engineering students. The paper does not try to offer a comprehensive overview of language acquisition mechanisms, but rather it is intended to review more narrowly how our conceptual systems, governed by intricately linked networks of neural connections in the brain, make language development possible, creating, at the same time, some L2 processing problems. The case of ‘cognates and false friends’ in specialised contexts is brought here to illustrate some of the processing problems that the L2 learner has to confront, and how mappings in the visual, phonological and semantic (conceptual) brain structures function in second language processing of new vocabulary. Resumen Este artículo pretende reflexionar sobre un aspecto de la perspectiva del procesamiento de segundas lenguas (L2) en el contexto del ICT: el procesamiento de palabras nuevas, en inglés, conocidas como “cognados” y “falsos amigos”, por parte de estudiantes de ingeniería españoles. No se pretende ofrecer una visión completa de los mecanismos de adquisición del lenguaje, más bien se intenta mostrar cómo nuestro sistema conceptual, gobernado por una complicada red de conexiones neuronales en el cerebro, hace posible el desarrollo del lenguaje, aunque ello conlleve ciertas dificultades en el procesamiento de segundas lenguas. El caso de los “cognados” y los “falsos amigos”, en los lenguajes de especialidad, se trae para ilustrar algunos de los problemas de procesamiento que el estudiante de una lengua extranjera tiene que afrontar y el funcionamiento de las correspondencias entre las estructuras visuales, fonológicas y semánticas (conceptuales) del cerebro en el procesamiento de nuevo vocabulario.