29 resultados para exfoliated layers
em Universidad Politécnica de Madrid
Resumo:
The thermal annealing of amorphous tracks of nanometer-size diameter generated in lithium niobate (LiNbO3) by Bromine ions at 45 MeV, i.e., in the electronic stopping regime, has been investigated by RBS/C spectrometry in the temperature range from 250°C to 350°C. Relatively low fluences have been used (<1012 cm−2) to produce isolated tracks. However, the possible effect of track overlapping has been investigated by varying the fluence between 3×1011 cm−2 and 1012 cm−2. The annealing process follows a two-step kinetics. In a first stage (I) the track radius decreases linearly with the annealing time. It obeys an Arrhenius-type dependence on annealing temperature with activation energy around 1.5 eV. The second stage (II) operates after the track radius has decreased down to around 2.5 nm and shows a much lower radial velocity. The data for stage I appear consistent with a solid-phase epitaxial process that yields a constant recrystallization rate at the amorphous-crystalline boundary. HRTEM has been used to monitor the existence and the size of the annealed isolated tracks in the second stage. On the other hand, the thermal annealing of homogeneous (buried) amorphous layers has been investigated within the same temperature range, on samples irradiated with Fluorine at 20 MeV and fluences of ∼1014 cm−2. Optical techniques are very suitable for this case and have been used to monitor the recrystallization of the layers. The annealing process induces a displacement of the crystalline-amorphous boundary that is also linear with annealing time, and the recrystallization rates are consistent with those measured for tracks. The comparison of these data with those previously obtained for the heavily damaged (amorphous) layers produced by elastic nuclear collisions is summarily discussed.
Resumo:
We report on properties of high quality ~60 nm thick InAlN layers nearly in-plane lattice-matched to GaN, grown on c-plane GaN-on-sapphire templates by plasma-assisted molecular beam epitaxy. Excellent crystalline quality and low surface roughness are confirmed by X-ray diffraction, transmission electron microscopy, and atomic force microscopy. High annular dark field observations reveal a periodic in-plane indium content variation (8 nm period), whereas optical measurements evidence certain residual absorption below the band-gap. The indium fluctuation is estimated to be +/- 1.2% around the nominal 17% indium content via plasmon energy oscillations assessed by electron energy loss spectroscopy with sub-nanometric spatial resolution.
Resumo:
The high lattice mismatch between III-nitride binaries (InN, GaN and AlN) remains a key problem to grow high quality III-nitride heterostructures. Recent interest has been focused on the growth of high-quality InAlN layers, with approximately 18% of indium incorporation, in-plane lattice-matched (LM) to GaN. While a lot of work has been done by metal-organic vapour phase epitaxy (MOVPE) by Carlin and co-workers, its growth by molecular beam epitaxy (MBE) is still in infancy
Resumo:
Separated transitional boundary layers appear on key aeronautical processes such as the flow around wings or turbomachinery blades. The aim of this thesis is the study of these flows in representative scenarios of technological applications, gaining knowledge about phenomenology and physical processes that occur there and, developing a simple model for scaling them. To achieve this goal, experimental measurements have been carried out in a low speed facility, ensuring the flow homogeneity and a low disturbances level such that unwanted transitional mechanisms are avoided. The studied boundary layers have been developed on a flat plate, by imposing a pressure gradient by means of contoured walls. They generate an initial acceleration region followed by a deceleration zone. The initial region is designed to obtain at the beginning of the deceleration the Blasius profile, characterized by its momentum thickness, and an edge boundary layer velocity, defining the problem characteristic velocity. The deceleration region is designed to obtain a linear evolution of the edge velocity, thereby defining the characteristic length of the problem. Several experimental techniques, both intrusive (hot wire anemometry, total pressure probes) as nonintrusive (PIV and LDV anemometry, high-speed filming), have been used in order to take advantage of each of them and allow cross-validation of the results. Once the boundary layer at the deceleration beginning has been characterized, ensuring the desired integral parameters and level of disturbance, the evolution of the laminar boundary layer up to the point of separation is studied. It has been compared with integral methods, and numerical simulations. In view of the results a new model for this evolution is proposed. Downstream from the separation, the flow near to the wall is configured as a shear layer that encloses low momentum recirculating fluid. The region where the shear layer remains laminar tends to be positioned to compensate the adverse pressure gradient associated with the imposed deceleration. Under these conditions, the momentum thickness remains almost constant. This laminar shear layer region extends up to where transitional phenomena appear, extension that scales with the momentum thickness at separation. These transitional phenomena are of inviscid type, similar to those found in free shear layers. The transitional region analysis begins with a study of the disturbances evolution in the linear growth region and the comparison of experimental results with a numerical model based on Linear Stability Theory for parallel flows and with data from other authors. The results’ coalescence for both the disturbances growth and the excited frequencies is stated. For the transition final stages the vorticity concentration into vortex blobs is found, analogously to what happens in free shear layers. Unlike these, the presence of the wall and the pressure gradient make the large scale structures to move towards the wall and quickly disappear under certain circumstances. In these cases, the recirculating flow is confined into a closed region saying the bubble is closed or the boundary layer reattaches. From the reattachment point, the fluid shows a configuration in the vicinity of the wall traditionally considered as turbulent. It has been observed that existing integral methods for turbulent boundary layers do not fit well to the experimental results, due to these methods being valid only for fully developed turbulent flow. Nevertheless, it has been found that downstream from the reattachment point the velocity profiles are self-similar, and a model has been proposed for the evolution of the integral parameters of the boundary layer in this region. Finally, the phenomenon known as bubble burst is analyzed. It has been checked the validity of existing models in literature and a new one is proposed. This phenomenon is blamed to the inability of the large scale structures formed after the transition to overcome with the adverse pressure gradient, move towards the wall and close the bubble. El estudio de capas límites transicionales con separación es de gran relevancia en distintas aplicaciones tecnológicas. Particularmente, en tecnología aeronáutica, aparecen en procesos claves, tales como el flujo alrededor de alas o álabes de turbomaquinaria. El objetivo de esta tesis es el estudio de estos flujos en situaciones representativas de las aplicaciones tecnológicas, ganando por un lado conocimiento sobre la fenomenología y los procesos físicos que aparecen y, por otra parte, desarrollando un modelo sencillo para el escalado de los mismos. Para conseguir este objetivo se han realizado ensayos en una instalación experimental de baja velocidad específicamente diseñada para asegurar un flujo homogéneo y con bajo nivel de perturbaciones, de modo que se evita el disparo de mecanismos transicionales no deseados. La capa límite bajo estudio se ha desarrollado sobre una placa plana, imponiendo un gradiente de presión a la misma por medio de paredes de geometría especificada. éstas generan una región inicial de aceleración seguida de una zona de deceleración. La región inicial se diseña para tener en al inicio de la deceleración un perfil de capa límite de Blasius, caracterizado por su espesor de cantidad de movimiento, y una cierta velocidad externa a la capa límite que se considera la velocidad característica del problema. La región de deceleración está concebida para que la variación de la velocidad externa a la capa límite sea lineal, definiendo de esta forma una longitud característica del problema. Los ensayos se han realizado explotando varias técnicas experimentales, tanto intrusivas (anemometría de hilo caliente, sondas de presión total) como no intrusivas (anemometrías láser y PIV, filmación de alta velocidad), de cara a aprovechar las ventajas de cada una de ellas y permitir validación cruzada de resultados entre las mismas. Caracterizada la capa límite al comienzo de la deceleración, y garantizados los parámetros integrales y niveles de perturbación deseados se procede al estudio de la zona de deceleración. Se presenta en la tesis un análisis de la evolución de la capa límite laminar desde el inicio de la misma hasta el punto de separación, comparando con métodos integrales, simulaciones numéricas, y proponiendo un nuevo modelo para esta evolución. Aguas abajo de la separación, el flujo en las proximidades de la pared se configura como una capa de cortadura que encierra una región de fluido recirculatorio de baja cantidad de movimiento. Se ha caracterizado la región en que dicha capa de cortadura permanece laminar, encontrando que se posiciona de modo que compensa el gradiente adverso de presión asociado a la deceleración de la corriente. En estas condiciones, el espesor de cantidad de movimiento permanece prácticamente constante y esta capa de cortadura laminar se extiende hasta que los fenómenos transicionales aparecen. Estos fenómenos son de tipo no viscoso, similares a los que aparecen en una capa de cortadura libre. El análisis de la región transicional comienza con un estudio de la evolución de las vii viii RESUMEN perturbaciones en la zona de crecimiento lineal de las mismas y la comparación de los resultados experimentales con un modelo numérico y con datos de otros autores. La coalescencia de los resultados tanto para el crecimiento de las perturbaciones como para las frecuencias excitadas queda demostrada. Para los estadios finales de la transición se observa la concentración de la vorticidad en torbellinos, de modo análogo a lo que ocurre en capas de cortadura libres. A diferencia de estas, la presencia de la pared y del gradiente de presión hace que, bajo ciertas condiciones, la gran escala se desplace hacia la pared y desaparezca rápidamente. En este caso el flujo recirculatorio queda confinado en una región cerrada y se habla de cierre de la burbuja o readherencia de la capa límite. A partir del punto de readherencia se tiene una configuración fluida en las proximidades de la pared que tradicionalmente se ha considerado turbulenta. Se ha observado que los métodos integrales existentes para capas límites turbulentas no ajustan bien a las medidas experimentales realizadas, hecho imputable a que no se obtiene en dicha región un flujo turbulento plenamente desarrollado. Se ha encontrado, sin embargo, que pasado el punto de readherencia los perfiles de velocidad próximos a la pared son autosemejantes entre sí y se ha propuesto un modelo para la evolución de los parámetros integrales de la capa límite en esta región. Finalmente, el fenómeno conocido como “estallido” de la burbuja se ha analizado. Se ha comprobado la validez de los modelos existentes en la literatura y se propone uno nuevo. Este fenómeno se achaca a la incapacidad de la gran estructura formada tras la transición para vencer el gradiente adverso de presión, desplazarse hacia la pared y cerrar la burbuja.
Resumo:
This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended for use as high-impedance films of acoustic reflectors for solidly mounted resonators operating in the gigahertz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed dc powers, and substrate biases. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is assessed by deriving the mass density from X-ray reflectometry measurements and the acoustic velocity from picosecond acoustic spectroscopy and the analysis of the frequency response of the test resonators.
Resumo:
Reduced performance in Gallium Nitride (GaN) based high electron mobility transistors (HEMTs) as a result of self-heating has been well-documented. A new approach, termed “diamond-before-gate" is shown to improve the thermal budget of the deposition process and enables large area diamond without degrading the gate metal NCD capped devices had a 20% lower channel temperature at equivalent power dissipation.
Resumo:
This paper presents some ideas about a new neural network architecture that can be compared to a Taylor analysis when dealing with patterns. Such architecture is based on lineal activation functions with an axo-axonic architecture. A biological axo-axonic connection between two neurons is defined as the weight in a connection in given by the output of another third neuron. This idea can be implemented in the so called Enhanced Neural Networks in which two Multilayer Perceptrons are used; the first one will output the weights that the second MLP uses to computed the desired output. This kind of neural network has universal approximation properties even with lineal activation functions. There exists a clear difference between cooperative and competitive strategies. The former ones are based on the swarm colonies, in which all individuals share its knowledge about the goal in order to pass such information to other individuals to get optimum solution. The latter ones are based on genetic models, that is, individuals can die and new individuals are created combining information of alive one; or are based on molecular/celular behaviour passing information from one structure to another. A swarm-based model is applied to obtain the Neural Network, training the net with a Particle Swarm algorithm.
Resumo:
Deep level defects in n-type unintentionally doped a-plane MgxZn1−xO, grown by molecular beam epitaxy on r-plane sapphire were fully characterized using deep level optical spectroscopy (DLOS) and related methods. Four compositions of MgxZn1−xO were examined with x = 0.31, 0.44, 0.52, and 0.56 together with a control ZnO sample. DLOS measurements revealed the presence of five deep levels in each Mg-containing sample, having energy levels of Ec − 1.4 eV, 2.1 eV, 2.6 V, and Ev + 0.3 eV and 0.6 eV. For all Mg compositions, the activation energies of the first three states were constant with respect to the conduction band edge, whereas the latter two revealed constant activation energies with respect to the valence band edge. In contrast to the ternary materials, only three levels, at Ec − 2.1 eV, Ev + 0.3 eV, and 0.6 eV, were observed for the ZnO control sample in this systematically grown series of samples. Substantially higher concentrations of the deep levels at Ev + 0.3 eV and Ec − 2.1 eV were observed in ZnO compared to the Mg alloyed samples. Moreover, there is a general invariance of trap concentration of the Ev + 0.3 eV and 0.6 eV levels on Mg content, while at least and order of magnitude dependency of the Ec − 1.4 eV and Ec − 2.6 eV levels in Mg alloyed samples.
Resumo:
Transformers with parallel windings are commonly used to reduce the losses in the windings. Windings losses depend on the winding positioning and the frequency effects because each winding affects the current sharing of itself and the neighboring windings. In this paper a methodology for determining the connections of the parallel windings that reduces the power losses (and temperature) in the windings of multi-winding transformers is presented. Other applications of the method, such as balanced current sharing and voltage drop reduction are also explored. In this paper a methodology for determining the connections of the parallel windings that reduces the power losses (and temperature) in the windings of multi-winding transformers is presented. Other applications of the method, such as balanced current sharing and voltage drop reduction are also explored.
Resumo:
A modified winding layout for three-phase transformers with PCB windings is proposed in this paper. This modified layout can be used in high current transformers with many PCB layers to simplify the fabrication process. One of the key factors that might increase the cost and complexity in the construction of planar transformers is the number of layers of each PCB winding. This issue becomes even more important in medium-high power three-phase transformers, where the number of PCB layers is higher. In addition to that, the proposed method allows the use of commercial core shapes that are commonly used to design single-phase transformers. This fact makes possible the reduction of cost and flexibility of the design solutions. The proposed solution has been validated and compared using the conventional and the proposed methodologies to design a high power (20 kW) transformer.
Resumo:
The presented works aim at proposing a methodology for the simulation of offshore wind conditions using CFD. The main objective is the development of a numerical model for the characterization of atmospheric boundary layers of different stability levels, as the most important issue in offshore wind resource assessment. Based on Monin-Obukhov theory, the steady k-ε Standard turbulence model is modified to take into account thermal stratification in the surface layer. The validity of Monin-Obukhov theory in offshore conditions is discussed with an analysis of a three day episode at FINO-1 platform.
Resumo:
A dynamical model is proposed to describe the coupled decomposition and profile evolution of a free surfacefilm of a binary mixture. An example is a thin film of a polymer blend on a solid substrate undergoing simultaneous phase separation and dewetting. The model is based on model-H describing the coupled transport of the mass of one component (convective Cahn-Hilliard equation) and momentum (Navier-Stokes-Korteweg equations) supplemented by appropriate boundary conditions at the solid substrate and the free surface. General transport equations are derived using phenomenological nonequilibrium thermodynamics for a general nonisothermal setting taking into account Soret and Dufour effects and interfacial viscosity for the internal diffuse interface between the two components. Focusing on an isothermal setting the resulting model is compared to literature results and its base states corresponding to homogeneous or vertically stratified flat layers are analyzed.
Resumo:
Algebraic topology (homology) is used to analyze the state of spiral defect chaos in both laboratory experiments and numerical simulations of Rayleigh-Bénard convection. The analysis reveals topological asymmetries that arise when non-Boussinesq effects are present. The asymmetries are found in different flow fields in the simulations and are robust to substantial alterations to flow visualization conditions in the experiment. However, the asymmetries are not observable using conventional statistical measures. These results suggest homology may provide a new and general approach for connecting spatiotemporal observations of chaotic or turbulent patterns to theoretical models.
Resumo:
We study theoretically the stability of two superposed fluid layers heated laterally. The fluids are supposed to be immiscible, the interface undeformable and of infinite horizontal extension. Combined thermocapillary and buoyancy forces give rise to a basic flow when a temperature difference is applied. The calculations are performed for a melt of GaAs under a layer of molten B2 O3 , a configuration of considerable technological importance. Four dif- ferent flow patterns and five temperature configurations are found for the basic state in this system. A linear stability analysis shows that the basic state may be destabilized by oscilla- tory motions leading to the so-called hydrothermal waves. Depending on the relative height of the two layers these hydrothermal waves propagate parallel or perpendicular to the temperature gradient. This analysis reveals that these perturbations can alter significantly the liquid flow in the liquid-encapsulated crystal growth techniques.
Resumo:
This work is devoted to the theoretical study of the stability of two superposed horizontal liquid layers bounded by two solid planes and subjected to a horizontal temperature gradient. The liquids are supposed to be immiscible with a nondeformable interface. The forces acting on the system are buoyancy and interfacial tension. Four different flow patterns and temperature profiles are found for the basic state. A linear perturbative analysis with respect to two- and three-dimensional perturbations reveals the existence of three kinds of patterns. Depending on the relative height of both liquids several situations are predicted: either wave propa- gation from cold to the hot regions, or waves propagating in the opposite direction or still stationary longitu- dinal rolls. The behavior of three different pairs of liquids which have been used in experiments on bilayers under vertical gradient by other authors have been examined. The instability mechanisms are discussed and a qualitative interpretation of the different behaviors exhibited by the system is provided. In some configurations it is possible to find a codimension-two point created by the interaction of two Hopf modes with different frequencies and wave numbers. These results suggest to consider two liquid layers as an interesting prototype ? nard-Marangoni problem.