41 resultados para electron field emission
em Universidad Politécnica de Madrid
Resumo:
A 3-year Project started on November 1 2010, financed by the European Commision within the FP-7 Space Program, and aimed at developing an efficient de-orbit system that could be carried on board by future spacecraft launched into LEO, will be presented. The operational system will deploy a thin uninsulated tape-tether to collect electrons as a giant Langmuir probe, using no propellant/no power supply, and generating power on board. This project will involve free-fall tests, and laboratory hypervelocity-impact and tether-current tests, and design/Manufacturing of subsystems: interface elements, electric control and driving module, electron-ejecting plasma contactor, tether-deployment mechanism/end-mass, and tape samples. Preliminary results to be presented involve: i) devising criteria for sizing the three disparate tape dimensions, affecting mass, resistance, current-collection, magnetic self-field, and survivability against debris itself; ii) assessing the dynamical relevance of tether parameters in implementing control laws to limit oscillations in /off the orbital plane, where passive stability may be marginal; iii) deriving a law for bare-tape current from numerical simulations and chamber tests, taking into account ambient magnetic field, ion ram motion, and adiabatic electron trapping; iv) determining requirements on a year-dormant hollow cathode under long times/broad emission-range operation, and trading-off against use of electron thermal emission; v) determining requirements on magnetic components and power semiconductors for a control module that faces high voltage/power operation under mass/volume limitations; vi) assessing strategies to passively deploy a wide conductive tape that needs no retrieval, while avoiding jamming and ending at minimum libration; vii) evaluating the tape structure as regards conductive and dielectric materials, both lengthwise and in its cross-section, in particular to prevent arcing in triple-point junctions.
Resumo:
The determination of the plasma potential Vpl of unmagnetized plasmas by using the floating potential of emissive Langmuir probes operated in the strong emission regime is investigated. The experiments evidence that, for most cases, the electron thermionic emission is orders of magnitude larger than the plasma thermal electron current. The temperature-dependent floating potentials of negatively biased Vpmenor queVpl emissive probes are in agreement with the predictions of a simple phenomenological model that considers, in addition to the plasma electrons, an ad-ditional electron group that contributes to the probe current. The latter would be constituted by a fraction of the repelled electron thermionic current, which might return back to the probe with a different energy spectrum. Its origin would be a plasma potential well formed in the plasma sheath around the probe, acting as a virtual cathode or by collisions and electron thermalization pro-cesses. These results suggest that, for probe bias voltages close to the plasma potential Vp?Vpl, two electron populations coexist, i.e., the electrons from the plasma with temperatureTeand a large group of returned thermionic electrons. These results question the theoretical possibility of measuring the electron temperature by using emissive probes biased to potentials Vp about lower equal than ?Vpl.
Resumo:
This study evaluates the mechanical behaviour of an Y2O3-dispersed tungsten (W) alloy and compares it to a pure W reference material. Both materials were processed via mechanical alloying (MA) and subsequent hot isostatic pressing (HIP). We performed non-standard three-point bending (TPB) tests in both an oxidising atmosphere and vacuum across a temperature range from 77 K, obtained via immersion in liquid nitrogen, to 1473 K to determine the mechanical strength, yield strength and fracture toughness. This research aims to evaluate how the mechanical behaviour of the alloy is affected by oxides formed within the material at high temperatures, primarily from 873 K, when the materials undergo a massive thermal degradation. The results indicate that the alloy is brittle to a high temperature (1473 K) under both atmospheres and that the mechanical properties degrade significantly above 873 K. We also used Vickers microhardness tests and the dynamic modulus by impulse excitation technique (IET) to determine the elastic modulus at room temperature. Moreover, we performed nanoindentation tests to determine the effect of size on the hardness and elastic modulus; however, no significant differences were found. Additionally, we calculated the relative density of the samples to assess the porosity of the alloy. Finally, we analysed the microstructure and fracture surfaces of the tested materials via field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). In this way, the relationship between the macroscopic mechanical properties and micromechanisms of failure could be determined based on the temperature and oxides formed
Resumo:
Tungsten (W) and its alloys are very promising materials for producing plasma-facing components (PFCs) in the fusion power reactors of the near future, even as a structural part in them. However, whereas the properties of pure tungsten are suitable for a PFC, its structural applications are still limited due to its low toughness, ductile to brittle transition temperature and recrystallization behaviour. Therefore, many efforts have been made to improve its performance by alloying tungsten with other elements. Hence, in this investigation, the thermo-mechanical performance of two new tungsten-tantalum materials has been evaluated. Materials with We5wt.%Ta and We15wt.%Ta were processed by mechanical alloying (MA) and later consolidation by hot isostatic pressing (HIP), with distinct settings for each composition. Thus, it was possible to determine the relationship between the microstructure and the addition of Ta with the macroscopic mechanical properties. These were measured by means of hardness, flexural strength and fracture toughness, in the temperature range of 300e1473 K. The microstructure and the fracture surfaces features of the tested materials were analysed by Field Emission Scanning Electron Microscopy (FESEM).
Resumo:
The Top-Hat hot electron light emission and lasing in semiconductor heterostructure (HELLISH)-vertical cavity semiconductor optical amplifier (VCSOA) is a modified version of a HELLISH-VCSOA device. It has a shorter p-channel and longer n-channel. The device studied in this work consists of a simple GaAs p-i-n junction, containing 11 Ga0.35In0.65 N0.02As0.08/GaAs multiple quantum wells in its intrinsic region; the active region is enclosed between six pairs of GaAs/AlAs top distributed Bragg reflector (DBR) mirrors and 20.5 pairs of AlAs/GaAs bottom DBR mirrors. The operation of the device is based on longitudinal current transport parallel to the layers of the GaAs p-n junction. The device is characterised through I-V-L and by spectral photoluminescence, electroluminescence and electro-photoluminescence measurements. An amplification of about 25 dB is observed at applied voltages of around V = 88 V.
Resumo:
Una amarra electrodinámica (electrodynamic tether) opera sobre principios electromagnéticos intercambiando momento con la magnetosfera planetaria e interactuando con su ionosfera. Es un subsistema pasivo fiable para desorbitar etapas de cohetes agotadas y satélites al final de su misión, mitigando el crecimiento de la basura espacial. Una amarra sin aislamiento captura electrones del plasma ambiente a lo largo de su segmento polarizado positivamente, el cual puede alcanzar varios kilómetros de longitud, mientras que emite electrones de vuelta al plasma mediante un contactor de plasma activo de baja impedancia en su extremo catódico, tal como un cátodo hueco (hollow cathode). En ausencia de un contactor catódico activo, la corriente que circula por una amarra desnuda en órbita es nula en ambos extremos de la amarra y se dice que ésta está flotando eléctricamente. Para emisión termoiónica despreciable y captura de corriente en condiciones limitadas por movimiento orbital (orbital-motion-limited, OML), el cociente entre las longitudes de los segmentos anódico y catódico es muy pequeño debido a la disparidad de masas entre iones y electrones. Tal modo de operación resulta en una corriente media y fuerza de Lorentz bajas en la amarra, la cual es poco eficiente como dispositivo para desorbitar. El electride C12A7 : e−, que podría presentar una función de trabajo (work function) tan baja como W = 0.6 eV y un comportamiento estable a temperaturas relativamente altas, ha sido propuesto como recubrimiento para amarras desnudas. La emisión termoiónica a lo largo de un segmento así recubierto y bajo el calentamiento de la operación espacial, puede ser más eficiente que la captura iónica. En el modo más simple de fuerza de frenado, podría eliminar la necesidad de un contactor catódico activo y su correspondientes requisitos de alimentación de gas y subsistema de potencia, lo que resultaría en un sistema real de amarra “sin combustible”. Con este recubrimiento de bajo W, cada segmento elemental del segmento catódico de una amarra desnuda de kilómetros de longitud emitiría corriente como si fuese parte de una sonda cilíndrica, caliente y uniformemente polarizada al potencial local de la amarra. La operación es similar a la de una sonda de Langmuir 2D tanto en los segmentos catódico como anódico. Sin embargo, en presencia de emisión, los electrones emitidos resultan en carga espacial (space charge) negativa, la cual reduce el campo eléctrico que los acelera hacia fuera, o incluso puede desacelerarlos y hacerlos volver a la sonda. Se forma una doble vainas (double sheath) estable con electrones emitidos desde la sonda e iones provenientes del plasma ambiente. La densidad de corriente termoiónica, variando a lo largo del segmento catódico, podría seguir dos leyes distintas bajo diferentes condiciones: (i) la ley de corriente limitada por la carga espacial (space-charge-limited, SCL) o (ii) la ley de Richardson-Dushman (RDS). Se presenta un estudio preliminar sobre la corriente SCL frente a una sonda emisora usando la teoría de vainas (sheath) formada por la captura iónica en condiciones OML, y la corriente electrónica SCL entre los electrodos cilíndricos según Langmuir. El modelo, que incluye efectos óhmicos y el efecto de transición de emisión SCL a emisión RDS, proporciona los perfiles de corriente y potencial a lo largo de la longitud completa de la amarra. El análisis muestra que en el modo más simple de fuerza de frenado, bajo condiciones orbitales y de amarras típicas, la emisión termoiónica proporciona un contacto catódico eficiente y resulta en una sección catódica pequeña. En el análisis anterior, tanto la transición de emisión SCL a RD como la propia ley de emisión SCL consiste en un modelo muy simplificado. Por ello, a continuación se ha estudiado con detalle la solución de vaina estacionaria de una sonda con emisión termoiónica polarizada negativamente respecto a un plasma isotrópico, no colisional y sin campo magnético. La existencia de posibles partículas atrapadas ha sido ignorada y el estudio incluye tanto un estudio semi-analítico mediante técnica asintóticas como soluciones numéricas completas del problema. Bajo las tres condiciones (i) alto potencial, (ii) R = Rmax para la validez de la captura iónica OML, y (iii) potencial monotónico, se desarrolla un análisis asintótico auto-consistente para la estructura de plasma compleja que contiene las tres especies de cargas (electrones e iones del plasma, electrones emitidos), y cuatro regiones espaciales distintas, utilizando teorías de movimiento orbital y modelos cinéticos de las especies. Aunque los electrones emitidos presentan carga espacial despreciable muy lejos de la sonda, su efecto no se puede despreciar en el análisis global de la estructura de la vaina y de dos capas finas entre la vaina y la región cuasi-neutra. El análisis proporciona las condiciones paramétricas para que la corriente sea SCL. También muestra que la emisión termoiónica aumenta el radio máximo de la sonda para operar dentro del régimen OML y que la emisión de electrones es mucho más eficiente que la captura iónica para el segmento catódico de la amarra. En el código numérico, los movimientos orbitales de las tres especies son modelados para potenciales tanto monotónico como no-monotónico, y sonda de radio R arbitrario (dentro o más allá del régimen de OML para la captura iónica). Aprovechando la existencia de dos invariante, el sistema de ecuaciones Poisson-Vlasov se escribe como una ecuación integro-diferencial, la cual se discretiza mediante un método de diferencias finitas. El sistema de ecuaciones algebraicas no lineal resultante se ha resuelto de con un método Newton-Raphson paralelizado. Los resultados, comparados satisfactoriamente con el análisis analítico, proporcionan la emisión de corriente y la estructura del plasma y del potencial electrostático. ABSTRACT An electrodynamic tether operates on electromagnetic principles and exchanges momentum through the planetary magnetosphere, by continuously interacting with the ionosphere. It is a reliable passive subsystem to deorbit spent rocket stages and satellites at its end of mission, mitigating the growth of orbital debris. A tether left bare of insulation collects electrons by its own uninsulated and positively biased segment with kilometer range, while electrons are emitted by a low-impedance active device at the cathodic end, such as a hollow cathode, to emit the full electron current. In the absence of an active cathodic device, the current flowing along an orbiting bare tether vanishes at both ends and the tether is said to be electrically floating. For negligible thermionic emission and orbital-motion-limited (OML) collection throughout the entire tether (electron/ion collection at anodic/cathodic segment, respectively), the anodic-to-cathodic length ratio is very small due to ions being much heavier, which results in low average current and Lorentz drag. The electride C12A7 : e−, which might present a possible work function as low as W = 0.6 eV and moderately high temperature stability, has been proposed as coating for floating bare tethers. Thermionic emission along a thus coated cathodic segment, under heating in space operation, can be more efficient than ion collection and, in the simplest drag mode, may eliminate the need for an active cathodic device and its corresponding gas-feed requirements and power subsystem, which would result in a truly “propellant-less” tether system. With this low-W coating, each elemental segment on the cathodic segment of a kilometers-long floating bare-tether would emit current as if it were part of a hot cylindrical probe uniformly polarized at the local tether bias, under 2D probe conditions that are also applied to the anodic-segment analysis. In the presence of emission, emitted electrons result in negative space charge, which decreases the electric field that accelerates them outwards, or even reverses it, decelerating electrons near the emitting probe. A double sheath would be established with electrons being emitted from the probe and ions coming from the ambient plasma. The thermionic current density, varying along the cathodic segment, might follow two distinct laws under different con ditions: i) space-charge-limited (SCL) emission or ii) full Richardson-Dushman (RDS) emission. A preliminary study on the SCL current in front of an emissive probe is presented using the orbital-motion-limited (OML) ion-collection sheath and Langmuir’s SCL electron current between cylindrical electrodes. A detailed calculation of current and bias profiles along the entire tether length is carried out with ohmic effects considered and the transition from SCL to full RDS emission is included. Analysis shows that in the simplest drag mode, under typical orbital and tether conditions, thermionic emission provides efficient cathodic contact and leads to a short cathodic section. In the previous analysis, both the transition between SCL and RDS emission and the current law for SCL condition have used a very simple model. To continue, considering an isotropic, unmagnetized, colissionless plasma and a stationary sheath, the probe-plasma contact is studied in detail for a negatively biased probe with thermionic emission. The possible trapped particles are ignored and this study includes both semianalytical solutions using asymptotic analysis and complete numerical solutions. Under conditions of i) high bias, ii) R = Rmax for ion OML collection validity, and iii) monotonic potential, a self-consistent asymptotic analysis is carried out for the complex plasma structure involving all three charge species (plasma electrons and ions, and emitted electrons) and four distinct spatial regions using orbital motion theories and kinetic modeling of the species. Although emitted electrons present negligible space charge far away from the probe, their effect cannot be neglected in the global analysis for the sheath structure and two thin layers in between the sheath and the quasineutral region. The parametric conditions for the current to be space-chargelimited are obtained. It is found that thermionic emission increases the range of probe radius for OML validity and is greatly more effective than ion collection for cathodic contact of tethers. In the numerical code, the orbital motions of all three species are modeled for both monotonic and non-monotonic potential, and for any probe radius R (within or beyond OML regime for ion collection). Taking advantage of two constants of motion (energy and angular momentum), the Poisson-Vlasov equation is described by an integro differential equation, which is discretized using finite difference method. The non-linear algebraic equations are solved using a parallel implementation of the Newton-Raphson method. The results, which show good agreement with the analytical results, provide the results for thermionic current, the sheath structure, and the electrostatic potential.
Resumo:
This doctoral thesis explores some of the possibilities that near-field optics can bring to photovoltaics, and in particular to quantum-dot intermediate band solar cells (QD-IBSCs). Our main focus is the analytical optimization of the electric field distribution produced in the vicinity of single scattering particles, in order to produce the highest possible absorption enhancement in the photovoltaic medium in their surroundings. Near-field scattering structures have also been fabricated in laboratory, allowing the application of the previously studied theoretical concepts to real devices. We start by looking into the electrostatic scattering regime, which is only applicable to sub-wavelength sized particles. In this regime it was found that metallic nano-spheroids can produce absorption enhancements of about two orders of magnitude on the material in their vicinity, due to their strong plasmonic resonance. The frequency of such resonance can be tuned with the shape of the particles, allowing us to match it with the optimal transition energies of the intermediate band material. Since these metallic nanoparticles (MNPs) are to be inserted inside the cell photovoltaic medium, they should be coated by a thin insulating layer to prevent electron-hole recombination at their surface. This analysis is then generalized, using an analytical separation-of-variables method implemented in Mathematica7.0, to compute scattering by spheroids of any size and material. This code allowed the study of the scattering properties of wavelengthsized particles (mesoscopic regime), and it was verified that in this regime dielectric spheroids perform better than metallic. The light intensity scattered from such dielectric spheroids can have more than two orders of magnitude than the incident intensity, and the focal region in front of the particle can be shaped in several ways by changing the particle geometry and/or material. Experimental work was also performed in this PhD to implement in practice the concepts studied in the analysis of sub-wavelength MNPs. A wet-coating method was developed to self-assemble regular arrays of colloidal MNPs on the surface of several materials, such as silicon wafers, amorphous silicon films, gallium arsenide and glass. A series of thermal and chemical tests have been performed showing what treatments the nanoparticles can withstand for their embedment in a photovoltaic medium. MNPs arrays are then inserted in an amorphous silicon medium to study the effect of their plasmonic near-field enhancement on the absorption spectrum of the material. The self-assembled arrays of MNPs constructed in these experiments inspired a new strategy for fabricating IBSCs using colloidal quantum dots (CQDs). Such CQDs can be deposited in self-assembled monolayers, using procedures similar to those developed for the patterning of colloidal MNPs. The use of CQDs to form the intermediate band presents several important practical and physical advantages relative to the conventional dots epitaxially grown by the Stranski-Krastanov method. Besides, this provides a fast and inexpensive method for patterning binary arrays of QDs and MNPs, envisioned in the theoretical part of this thesis, in which the MNPs act as antennas focusing the light in the QDs and therefore boosting their absorption
Resumo:
This work studies the effect of the growth temperature on the morphology and emission characteristics of self-assembled InGaN nanocolumns grown by plasma assisted molecular beam epitaxy. Morphology changes are assessed by scanning electron microscopy, while emission is measured by photoluminescence. Within the growth temperature range of 750 to 650 °C, an increase in In incorporation for decreasing temperature is observed. This effect allows tailoring the InGaN nanocolumns emission line shape by using temperature gradients during growth. Depending on the gradient rate, span, and sign, broad emission line shapes are obtained, covering the yellow to green range, even yielding white emission
Resumo:
Esta tesis analiza los elementos que afectan a la evaluación del rendimiento dentro de la técnica de radiodiagnóstico mediante tomografía por emisión de positrones (PET), centrándose en escáneres preclínicos. Se exploran las posibilidades de los protocolos estándar de evaluación sobre los siguientes aspectos: su uso como herramienta para validar programas de simulación Montecarlo, como método para la comparación de escáneres y su validez en el estudio del efecto sobre la calidad de imagen al utilizar radioisótopos alternativos. Inicialmente se estudian los métodos de evaluación orientados a la validación de simulaciones PET, para ello se presenta el programa GAMOS como entorno de simulación y se muestran los resultados de su validación basada en el estándar NEMA NU 4-2008 para escáneres preclínicos. Esta validación se ha realizado mediante la comparación de los resultados simulados frente a adquisiciones reales en el equipo ClearPET, describiendo la metodología de evaluación y selección de los parámetros NEMA. En este apartado también se mencionan las aportaciones desarrolladas en GAMOS para aplicaciones PET, como la inclusión de herramientas para la reconstrucción de imágenes. Por otro lado, la evaluación NEMA del ClearPET es utilizada para comparar su rendimiento frente a otro escáner preclínico: el sistema rPET-1. Esto supone la primera caracterización NEMA NU 4 completa de ambos equipos; al mismo tiempo que se analiza cómo afectan las importantes diferencias de diseño entre ellos, especialmente el tamaño axial del campo de visión y la configuración de los detectores. El 68Ga es uno de los radioisótopos no convencionales en imagen PET que está experimentando un mayor desarrollo, sin embargo, presenta la desventaja del amplio rango o distancia recorrida por el positrón emitido. Además del rango del positrón, otra propiedad física característica de los radioisótopos PET que puede afectar a la imagen es la emisión de fotones gamma adicionales, tal como le ocurre al isótopo 48V. En esta tesis se evalúan dichos efectos mediante estudios de resolución espacial y calidad de imagen NEMA. Finalmente, se analiza el alcance del protocolo NEMA NU 4-2008 cuando se utiliza para este propósito, adaptándolo a tal fin y proponiendo posibles modificaciones. Abstract This thesis analyzes the factors affecting the performance evaluation in positron emission tomography (PET) imaging, focusing on preclinical scanners. It explores the possibilities of standard protocols of assessment on the following aspects: their use as tools to validate Monte Carlo simulation programs, their usefulness as a method for comparing scanners and their validity in the study of the effect of alternative radioisotopes on image quality. Initially we study the methods of performance evaluation oriented to validate PET simulations. For this we present the GAMOS program as a simulation framework and show the results of its validation based on the standard NEMA NU 4-2008 for preclinical PET scanners. This has been accomplished by comparing simulated results against experimental acquisitions in the ClearPET scanner, describing the methodology for the evaluation and selection of NEMA parameters. This section also mentions the contributions developed in GAMOS for PET applications, such as the inclusion of tools for image reconstruction. Furthermore, the evaluation of the ClearPET scanner is used to compare its performance against another preclinical scanner, specifically the rPET-1 system. This is the first complete NEMA NU 4 based characterization study of both systems. At the same time we analyze how do the significant design differences of these two systems, especially the size of the axial field of view and the detectors configuration affect their performance characteristics. 68Ga is one of the unconventional radioisotopes in PET imaging the use of which is currently significantly increasing; however, it presents the disadvantage of the long positron range (distance traveled by the emitted positron before annihilating with an electron). Besides the positron range, additional gamma photon emission is another physical property characteristic of PET radioisotopes that can affect the reconstructed image quality, as it happens to the isotope 48V. In this thesis we assess these effects through studies of spatial resolution and image quality. Finally, we analyze the scope of the NEMA NU 4-2008 to carry out such studies, adapting it and proposing possible modifications.
Resumo:
We report on the conversion of non-luminescent conventional poly(methylmethacrylate) (PMMA)-based electron-beam resists into luminescent materials when used as negative-tone resists, that is, when exposed to high electron irradiation doses. Raman spectroscopy reveals the chemical transformation induced by electron irradiation which is responsible for the observed luminescence in the visible (blue) region. The emission intensity from exposed PMMA-based patterns can be controlled by the electron irradiation dose employed to create them.
Resumo:
The luminescence properties of InxAl1−xN/GaN heterostructures are investigated systematically as a function of the In content (x = 0.067 − 0.208). The recombination between electrons confined in the two-dimensional electron gas and free holes in the GaN template is identified and analyzed. We find a systematic shift of the recombination with increasing In content from about 80 meV to only few meV below the GaN exciton emission. These results are compared with model calculations and can be attributed to the changing band profile and originating from the polarization gradient between InAlN and GaN.
Resumo:
Many cities in Europe have difficulties to meet the air quality standards set by the European legislation, most particularly the annual mean Limit Value for NO2. Road transport is often the main source of air pollution in urban areas and therefore, there is an increasing need to estimate current and future traffic emissions as accurately as possible. As a consequence, a number of specific emission models and emission factors databases have been developed recently. They present important methodological differences and may result in largely diverging emission figures and thus may lead to alternative policy recommendations. This study compares two approaches to estimate road traffic emissions in Madrid (Spain): the COmputer Programme to calculate Emissions from Road Transport (COPERT4 v.8.1) and the Handbook Emission Factors for Road Transport (HBEFA v.3.1), representative of the ‘average-speed’ and ‘traffic situation’ model types respectively. The input information (e.g. fleet composition, vehicle kilometres travelled, traffic intensity, road type, etc.) was provided by the traffic model developed by the Madrid City Council along with observations from field campaigns. Hourly emissions were computed for nearly 15 000 road segments distributed in 9 management areas covering the Madrid city and surroundings. Total annual NOX emissions predicted by HBEFA were a 21% higher than those of COPERT. The discrepancies for NO2 were lower (13%) since resulting average NO2/NOX ratios are lower for HBEFA. The larger differences are related to diesel vehicle emissions under “stop & go” traffic conditions, very common in distributor/secondary roads of the Madrid metropolitan area. In order to understand the representativeness of these results, the resulting emissions were integrated in an urban scale inventory used to drive mesoscale air quality simulations with the Community Multiscale Air Quality (CMAQ) modelling system (1 km2 resolution). Modelled NO2 concentrations were compared with observations through a series of statistics. Although there are no remarkable differences between both model runs, the results suggest that HBEFA may overestimate traffic emissions. However, the results are strongly influenced by methodological issues and limitations of the traffic model. This study was useful to provide a first alternative estimate to the official emission inventory in Madrid and to identify the main features of the traffic model that should be improved to support the application of an emission system based on “real world” emission factors.
Resumo:
An asymptotic analysis of the Langmuir-probe problem in a quiescent, fully ionized plasma in a strong magnetic field is performed, for electron cyclotron radius and Debye length much smaller than probe radius, and this not larger than either ion cyclotron radius or mean free path. It is found that the electric potential, which is not confined to a sheath, controls the diffusion far from the probe; inside the magnetic tube bounded by the probe cross section the potential overshoots to a large value before decaying to its value in the body of the plasma. The electron current is independent of the shape of the body along the field and increases with ion temperature; due to the overshoot in the potential, (1) the current at negative voltages does not vary exponentially, (2) its magnitude is strongly reduced by the field, and (3) the usual sharp knee at space potential, disappears. In the regions of the C-V diagram studied the ion current is negligible or unaffected by the field. Some numerical results are presented.The theory, which fails beyond certain positive voltage, fields useful results for weak fields, too.
Resumo:
The electrostatic plasma waves excited by a uniform, alternating electric field of arbitrary intensity are studied on the basis of the Vlasov equation; their dispersion relation, which involves the determinant of either of two infinite matrices, is derived. For ω0 ≫ ωpi (ω0 being the applied frequency and ωpi the ion plasma frequency) the waves may be classified in two groups, each satisfying a simple condition; this allows writing the dispersion relation in closed form. Both groups coalesce (resonance) if (a) ω0 ≈ ωpe/r (r any integer) and (b) the wavenumber k is small. A nonoscillatory instability is found; its distinction from the DuBois‐Goldman instability and its physical origin are discussed. Conditions for its excitation (in particular, upper limits to ω0,k, and k⋅vE,vE being the field‐induced electron velocity), and simple equations for the growth rate are given off‐resonance and at ω0 ≈ ωpi. The dependence of both threshold and maximum growth rate on various parameters is discussed, and the results are compared with those of Silin and Nishikawa. The threshold at ω0 ≈ ωpi/r,r ≠ 1, is studied.
Resumo:
A new material, C12A7 : electride, which might present a work function as low as 0.6 eV and moderately high temperature stability, was recently proposed as coating for floating bare tethers. Arising from heating under space operation, current is emitted by thermionic emission along a thus coated cathodic segment. A preliminary study on the space-charge-limited (SCL) double layer in front of the cathodic segment is presented using Langmuir’s SCL electron current between cylindrical electrodes and orbital-motion-limited ion-collection sheath. A detailed calculation of current and bias profiles along the entire tether length is carried out with ohmic effects and the transition from SCL to full Richardson-Dushman emission included. Analysis shows that in the simplest drag mode, under typical orbital and tether conditions, thermionic emission leads to a short cathodic section and may eliminate the need for an active cathodic device and its corresponding gas feed requirements and power subsystem, which results in a truly “propellant-less” tether system for such basic applications as de-orbiting low earth orbit satellites.