24 resultados para consumer decision processes

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We apply diffusion strategies to propose a cooperative reinforcement learning algorithm, in which agents in a network communicate with their neighbors to improve predictions about their environment. The algorithm is suitable to learn off-policy even in large state spaces. We provide a mean-square-error performance analysis under constant step-sizes. The gain of cooperation in the form of more stability and less bias and variance in the prediction error, is illustrated in the context of a classical model. We show that the improvement in performance is especially significant when the behavior policy of the agents is different from the target policy under evaluation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper outlines an automatic computervision system for the identification of avena sterilis which is a special weed seed growing in cereal crops. The final goal is to reduce the quantity of herbicide to be sprayed as an important and necessary step for precision agriculture. So, only areas where the presence of weeds is important should be sprayed. The main problems for the identification of this kind of weed are its similar spectral signature with respect the crops and also its irregular distribution in the field. It has been designed a new strategy involving two processes: image segmentation and decision making. The image segmentation combines basic suitable image processing techniques in order to extract cells from the image as the low level units. Each cell is described by two area-based attributes measuring the relations among the crops and weeds. The decision making is based on the SupportVectorMachines and determines if a cell must be sprayed. The main findings of this paper are reflected in the combination of the segmentation and the SupportVectorMachines decision processes. Another important contribution of this approach is the minimum requirements of the system in terms of memory and computation power if compared with other previous works. The performance of the method is illustrated by comparative analysis against some existing strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the architecture of a computer system conceived as an intelligent assistant for public transport management. The goal of the system is to help operators of a control center in making strategic decisions about how to solve problems of a fleet of buses in an urban network. The system uses artificial intelligence techniques to simulate the decision processes. In particular, a complex knowledge model has been designed by using advanced knowledge engineering methods that integrates three main tasks: diagnosis, prediction and planning. Finally, the paper describes two particular applications developed following this architecture for the cities of Torino (Italy) and Vitoria (Spain).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The SESAR (Single European Sky ATM Research) program is an ambitious re-search and development initiative to design the future European air traffic man-agement (ATM) system. The study of the behavior of ATM systems using agent-based modeling and simulation tools can help the development of new methods to improve their performance. This paper presents an overview of existing agent-based approaches in air transportation (paying special attention to the challenges that exist for the design of future ATM systems) and, subsequently, describes a new agent-based approach that we proposed in the CASSIOPEIA project, which was developed according to the goals of the SESAR program. In our approach, we use agent models for different ATM stakeholders, and, in contrast to previous work, our solution models new collaborative decision processes for flow traffic management, it uses an intermediate level of abstraction (useful for simulations at larger scales), and was designed to be a practical tool (open and reusable) for the development of different ATM studies. It was successfully applied in three stud-ies related to the design of future ATM systems in Europe.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is an increasing awareness among all kinds of organisations (in business,government and civil society) about the benefits of jointly working with stakeholders to satisfy both their goals and the social demands placed upon them. This is particularly the case within corporate social responsibility (CSR) frameworks. In this regard, multi-criteria tools for decision-making like the analytic hierarchy process (AHP) described in the paper can be useful for the building relationships with stakeholders. Since these tools can reveal decision-maker’s preferences, the integration of opinions from various stakeholders in the decision-making process may result in better and more innovative solutions with significant shared value. This paper is based on ongoing research to assess the feasibility of an AHP-based model to support CSR decisions in large infrastructure projects carried out by Red Electrica de España, the sole transmission agent and operator of the Spanishelectricity system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this study was to propose a multi-criteria optimization and decision-making technique to solve food engineering problems. This technique was demostrated using experimental data obtained on osmotic dehydratation of carrot cubes in a sodium chloride solution. The Aggregating Functions Approach, the Adaptive Random Search Algorithm, and the Penalty Functions Approach were used in this study to compute the initial set of non-dominated or Pareto-optimal solutions. Multiple non-linear regression analysis was performed on a set of experimental data in order to obtain particular multi-objective functions (responses), namely water loss, solute gain, rehydration ratio, three different colour criteria of rehydrated product, and sensory evaluation (organoleptic quality). Two multi-criteria decision-making approaches, the Analytic Hierarchy Process (AHP) and the Tabular Method (TM), were used simultaneously to choose the best alternative among the set of non-dominated solutions. The multi-criteria optimization and decision-making technique proposed in this study can facilitate the assessment of criteria weights, giving rise to a fairer, more consistent, and adequate final compromised solution or food process. This technique can be useful to food scientists in research and education, as well as to engineers involved in the improvement of a variety of food engineering processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

El actual contexto de fabricación, con incrementos en los precios de la energía, una creciente preocupación medioambiental y cambios continuos en los comportamientos de los consumidores, fomenta que los responsables prioricen la fabricación respetuosa con el medioambiente. El paradigma del Internet de las Cosas (IoT) promete incrementar la visibilidad y la atención prestada al consumo de energía gracias tanto a sensores como a medidores inteligentes en los niveles de máquina y de línea de producción. En consecuencia es posible y sencillo obtener datos de consumo de energía en tiempo real proveniente de los procesos de fabricación, pero además es posible analizarlos para incrementar su importancia en la toma de decisiones. Esta tesis pretende investigar cómo utilizar la adopción del Internet de las Cosas en el nivel de planta de producción, en procesos discretos, para incrementar la capacidad de uso de la información proveniente tanto de la energía como de la eficiencia energética. Para alcanzar este objetivo general, la investigación se ha dividido en cuatro sub-objetivos y la misma se ha desarrollado a lo largo de cuatro fases principales (en adelante estudios). El primer estudio de esta tesis, que se apoya sobre una revisión bibliográfica comprehensiva y sobre las aportaciones de expertos, define prácticas de gestión de la producción que son energéticamente eficientes y que se apoyan de un modo preeminente en la tecnología IoT. Este primer estudio también detalla los beneficios esperables al adoptar estas prácticas de gestión. Además, propugna un marco de referencia para permitir la integración de los datos que sobre el consumo energético se obtienen en el marco de las plataformas y sistemas de información de la compañía. Esto se lleva a cabo con el objetivo último de remarcar cómo estos datos pueden ser utilizados para apalancar decisiones en los niveles de procesos tanto tácticos como operativos. Segundo, considerando los precios de la energía como variables en el mercado intradiario y la disponibilidad de información detallada sobre el estado de las máquinas desde el punto de vista de consumo energético, el segundo estudio propone un modelo matemático para minimizar los costes del consumo de energía para la programación de asignaciones de una única máquina que deba atender a varios procesos de producción. Este modelo permite la toma de decisiones en el nivel de máquina para determinar los instantes de lanzamiento de cada trabajo de producción, los tiempos muertos, cuándo la máquina debe ser puesta en un estado de apagada, el momento adecuado para rearrancar, y para pararse, etc. Así, este modelo habilita al responsable de producción de implementar el esquema de producción menos costoso para cada turno de producción. En el tercer estudio esta investigación proporciona una metodología para ayudar a los responsables a implementar IoT en el nivel de los sistemas productivos. Se incluye un análisis del estado en que se encuentran los sistemas de gestión de energía y de producción en la factoría, así como también se proporcionan recomendaciones sobre procedimientos para implementar IoT para capturar y analizar los datos de consumo. Esta metodología ha sido validada en un estudio piloto, donde algunos indicadores clave de rendimiento (KPIs) han sido empleados para determinar la eficiencia energética. En el cuarto estudio el objetivo es introducir una vía para obtener visibilidad y relevancia a diferentes niveles de la energía consumida en los procesos de producción. El método propuesto permite que las factorías con procesos de producción discretos puedan determinar la energía consumida, el CO2 emitido o el coste de la energía consumida ya sea en cualquiera de los niveles: operación, producto o la orden de fabricación completa, siempre considerando las diferentes fuentes de energía y las fluctuaciones en los precios de la misma. Los resultados muestran que decisiones y prácticas de gestión para conseguir sistemas de producción energéticamente eficientes son posibles en virtud del Internet de las Cosas. También, con los resultados de esta tesis los responsables de la gestión energética en las compañías pueden plantearse una aproximación a la utilización del IoT desde un punto de vista de la obtención de beneficios, abordando aquellas prácticas de gestión energética que se encuentran más próximas al nivel de madurez de la factoría, a sus objetivos, al tipo de producción que desarrolla, etc. Así mismo esta tesis muestra que es posible obtener reducciones significativas de coste simplemente evitando los períodos de pico diario en el precio de la misma. Además la tesis permite identificar cómo el nivel de monitorización del consumo energético (es decir al nivel de máquina), el intervalo temporal, y el nivel del análisis de los datos son factores determinantes a la hora de localizar oportunidades para mejorar la eficiencia energética. Adicionalmente, la integración de datos de consumo energético en tiempo real con datos de producción (cuando existen altos niveles de estandarización en los procesos productivos y sus datos) es esencial para permitir que las factorías detallen la energía efectivamente consumida, su coste y CO2 emitido durante la producción de un producto o componente. Esto permite obtener una valiosa información a los gestores en el nivel decisor de la factoría así como a los consumidores y reguladores. ABSTRACT In today‘s manufacturing scenario, rising energy prices, increasing ecological awareness, and changing consumer behaviors are driving decision makers to prioritize green manufacturing. The Internet of Things (IoT) paradigm promises to increase the visibility and awareness of energy consumption, thanks to smart sensors and smart meters at the machine and production line level. Consequently, real-time energy consumption data from the manufacturing processes can be easily collected and then analyzed, to improve energy-aware decision-making. This thesis aims to investigate how to utilize the adoption of the Internet of Things at shop floor level to increase energy–awareness and the energy efficiency of discrete production processes. In order to achieve the main research goal, the research is divided into four sub-objectives, and is accomplished during four main phases (i.e., studies). In the first study, by relying on a comprehensive literature review and on experts‘ insights, the thesis defines energy-efficient production management practices that are enhanced and enabled by IoT technology. The first study also explains the benefits that can be obtained by adopting such management practices. Furthermore, it presents a framework to support the integration of gathered energy data into a company‘s information technology tools and platforms, which is done with the ultimate goal of highlighting how operational and tactical decision-making processes could leverage such data in order to improve energy efficiency. Considering the variable energy prices in one day, along with the availability of detailed machine status energy data, the second study proposes a mathematical model to minimize energy consumption costs for single machine production scheduling during production processes. This model works by making decisions at the machine level to determine the launch times for job processing, idle time, when the machine must be shut down, ―turning on‖ time, and ―turning off‖ time. This model enables the operations manager to implement the least expensive production schedule during a production shift. In the third study, the research provides a methodology to help managers implement the IoT at the production system level; it includes an analysis of current energy management and production systems at the factory, and recommends procedures for implementing the IoT to collect and analyze energy data. The methodology has been validated by a pilot study, where energy KPIs have been used to evaluate energy efficiency. In the fourth study, the goal is to introduce a way to achieve multi-level awareness of the energy consumed during production processes. The proposed method enables discrete factories to specify energy consumption, CO2 emissions, and the cost of the energy consumed at operation, production and order levels, while considering energy sources and fluctuations in energy prices. The results show that energy-efficient production management practices and decisions can be enhanced and enabled by the IoT. With the outcomes of the thesis, energy managers can approach the IoT adoption in a benefit-driven way, by addressing energy management practices that are close to the maturity level of the factory, target, production type, etc. The thesis also shows that significant reductions in energy costs can be achieved by avoiding high-energy price periods in a day. Furthermore, the thesis determines the level of monitoring energy consumption (i.e., machine level), the interval time, and the level of energy data analysis, which are all important factors involved in finding opportunities to improve energy efficiency. Eventually, integrating real-time energy data with production data (when there are high levels of production process standardization data) is essential to enable factories to specify the amount and cost of energy consumed, as well as the CO2 emitted while producing a product, providing valuable information to decision makers at the factory level as well as to consumers and regulators.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE The decision-making process plays a key role in organizations. Every decision-making process produces a final choice that may or may not prompt action. Recurrently, decision makers find themselves in the dichotomous question of following a traditional sequence decision-making process where the output of a decision is used as the input of the next stage of the decision, or following a joint decision-making approach where several decisions are taken simultaneously. The implication of the decision-making process will impact different players of the organization. The choice of the decision- making approach becomes difficult to find, even with the current literature and practitioners’ knowledge. The pursuit of better ways for making decisions has been a common goal for academics and practitioners. Management scientists use different techniques and approaches to improve different types of decisions. The purpose of this decision is to use the available resources as well as possible (data and techniques) to achieve the objectives of the organization. The developing and applying of models and concepts may be helpful to solve managerial problems faced every day in different companies. As a result of this research different decision models are presented to contribute to the body of knowledge of management science. The first models are focused on the manufacturing industry and the second part of the models on the health care industry. Despite these models being case specific, they serve the purpose of exemplifying that different approaches to the problems and could provide interesting results. Unfortunately, there is no universal recipe that could be applied to all the problems. Furthermore, the same model could deliver good results with certain data and bad results for other data. A framework to analyse the data before selecting the model to be used is presented and tested in the models developed to exemplify the ideas. METHODOLOGY As the first step of the research a systematic literature review on the joint decision is presented, as are the different opinions and suggestions of different scholars. For the next stage of the thesis, the decision-making process of more than 50 companies was analysed in companies from different sectors in the production planning area at the Job Shop level. The data was obtained using surveys and face-to-face interviews. The following part of the research into the decision-making process was held in two application fields that are highly relevant for our society; manufacturing and health care. The first step was to study the interactions and develop a mathematical model for the replenishment of the car assembly where the problem of “Vehicle routing problem and Inventory” were combined. The next step was to add the scheduling or car production (car sequencing) decision and use some metaheuristics such as ant colony and genetic algorithms to measure if the behaviour is kept up with different case size problems. A similar approach is presented in a production of semiconductors and aviation parts, where a hoist has to change from one station to another to deal with the work, and a jobs schedule has to be done. However, for this problem simulation was used for experimentation. In parallel, the scheduling of operating rooms was studied. Surgeries were allocated to surgeons and the scheduling of operating rooms was analysed. The first part of the research was done in a Teaching hospital, and for the second part the interaction of uncertainty was added. Once the previous problem had been analysed a general framework to characterize the instance was built. In the final chapter a general conclusion is presented. FINDINGS AND PRACTICAL IMPLICATIONS The first part of the contributions is an update of the decision-making literature review. Also an analysis of the possible savings resulting from a change in the decision process is made. Then, the results of the survey, which present a lack of consistency between what the managers believe and the reality of the integration of their decisions. In the next stage of the thesis, a contribution to the body of knowledge of the operation research, with the joint solution of the replenishment, sequencing and inventory problem in the assembly line is made, together with a parallel work with the operating rooms scheduling where different solutions approaches are presented. In addition to the contribution of the solving methods, with the use of different techniques, the main contribution is the framework that is proposed to pre-evaluate the problem before thinking of the techniques to solve it. However, there is no straightforward answer as to whether it is better to have joint or sequential solutions. Following the proposed framework with the evaluation of factors such as the flexibility of the answer, the number of actors, and the tightness of the data, give us important hints as to the most suitable direction to take to tackle the problem. RESEARCH LIMITATIONS AND AVENUES FOR FUTURE RESEARCH In the first part of the work it was really complicated to calculate the possible savings of different projects, since in many papers these quantities are not reported or the impact is based on non-quantifiable benefits. The other issue is the confidentiality of many projects where the data cannot be presented. For the car assembly line problem more computational power would allow us to solve bigger instances. For the operation research problem there was a lack of historical data to perform a parallel analysis in the teaching hospital. In order to keep testing the decision framework it is necessary to keep applying more case studies in order to generalize the results and make them more evident and less ambiguous. The health care field offers great opportunities since despite the recent awareness of the need to improve the decision-making process there are many opportunities to improve. Another big difference with the automotive industry is that the last improvements are not spread among all the actors. Therefore, in the future this research will focus more on the collaboration between academia and the health care sector.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

En las últimas tres décadas, las dinámicas de restructuración económica a nivel global han redefinido radicalmente el papel de las ciudades. La transición del keynesianismo al neoliberalismo ha provocado un cambio en las políticas urbanas de los gobiernos municipales, que han abandonado progresivamente las tareas de regulación y redistribución para centrarse en la promoción del crecimiento económico y la competitividad. En este contexto, muchas voces críticas han señalado que la regeneración urbana se ha convertido en un vehículo de extracción de valor de la ciudad y está provocando la expulsión de los ciudadanos más vulnerables. Sin embargo, la regeneración de áreas consolidadas supone también una oportunidad de mejora de las condiciones de vida de la población residente, y es una política necesaria para controlar la expansión de la ciudad y reducir las necesidades de desplazamiento, promoviendo así ciudades más sostenibles. Partiendo de la hipótesis de que la gobernanza de los procesos de regeneración urbana es clave en el resultado final de las operaciones y determina el modelo de ciudad resultante, el objetivo de esta investigación es verificar si la regeneración urbana es necesariamente un mecanismo de extracción de valor o si puede mejorar la calidad de vida en las ciudades a través de la participación de los ciudadanos. Para ello, propone un marco de análisis del proceso de toma de decisiones en los planes de regeneración urbana y su impacto en los resultados de los planes, tomando como caso de estudio la ciudad de Boston, que desde los años 1990 trata de convertirse en una “ciudad de los barrios”, fomentando la participación ciudadana al tiempo que se posiciona en la escena económica global. El análisis se centra en dos operaciones de regeneración iniciadas a finales de los años 1990. Por un lado, el caso de Jackson Square nos permite comprender el papel de la sociedad civil y el tercer sector en la regeneración de los barrios más desfavorecidos, en un claro ejemplo de urbanismo “desde abajo” (bottom-up planning). Por otro, la reconversión del frente marítimo de South Boston para la construcción del Distrito de Innovación nos acerca a las grandes operaciones de regeneración urbana con fines de estímulo económico, tradicionalmente vinculadas a los centros financieros (downtown) y dirigidas por las élites gubernamentales y económicas (la growth machine) a través de procesos más tecnocráticos (top-down planning). La metodología utilizada consiste en el análisis cualitativo de los procesos de toma de decisiones y la relación entre los agentes implicados, así como de la evaluación de la implementación de dichas decisiones y su influencia en el modelo urbano resultante. El análisis de los casos permite afirmar que la gobernanza de los procesos de regeneración urbana influye decisivamente en el resultado final de las intervenciones; sin embargo, la participación de la comunidad local en la toma de decisiones no es suficiente para que el resultado de la regeneración urbana contrarreste los efectos de la neoliberalización, especialmente si se limita a la fase de planeamiento y no se extiende a la fase de ejecución, y si no está apoyada por una movilización política de mayor alcance que asegure una acción pública redistributiva. Asimismo, puede afirmarse que los procesos de regeneración urbana suponen una redefinición del modelo de ciudad, dado que la elección de los espacios de intervención tiene consecuencias sobre el equilibrio territorial de la ciudad. Los resultados de esta investigación tienen implicaciones para la disciplina del planeamiento urbano. Por una parte, se confirma la vigencia del paradigma del “urbanismo negociado”, si bien bajo discursos de liderazgo público y sin apelación al protagonismo del sector privado. Por otra parte, la planificación colaborativa en un contexto de “responsabilización” de las organizaciones comunitarias puede desactivar la potencia política de la participación ciudadana y servir como “amortiguador” hacia el gobierno local. Asimismo, la sustitución del planeamiento general como instrumento de definición de la ciudad futura por una planificación oportunista basada en la actuación en áreas estratégicas que tiren del resto de la ciudad, no permite definir un modelo coherente y consensuado de la ciudad que se desea colectivamente, ni permite utilizar el planeamiento como mecanismo de redistribución. ABSTRACT In the past three decades, the dynamics of global economic restructuring have radically redefined the role of cities. The transition from keynesianism to neoliberalism has caused a shift in local governments’ urban policies, which have progressively abandoned the tasks of regulation and redistribution to focus on promoting economic growth and competitiveness. In this context, many critics have pointed out that urban regeneration has become a vehicle for extracting value from the city and is causing the expulsion of the most vulnerable citizens. However, regeneration of consolidated areas is also an opportunity to improve the living conditions of the resident population, and is a necessary policy to control the expansion of the city and reduce the need for transportation, thus promoting more sustainable cities. Assuming that the governance of urban regeneration processes is key to the final outcome of the plans and determines the resulting city model, the goal of this research is to verify whether urban regeneration is necessarily a value extraction mechanism or if it can improve the quality of life in cities through citizens’ participation. It proposes a framework for analysis of decision-making in urban regeneration processes and their impact on the results of the plans, taking as a case study the city of Boston, which since the 1990s is trying to become a "city of neighborhoods", encouraging citizen participation, while seeking to position itself in the global economic scene. The analysis focuses on two redevelopment plans initiated in the late 1990s. The Jackson Square case allows us to understand the role of civil society and the third sector in the regeneration of disadvantaged neighborhoods, in a clear example of bottom-up planning. On the contrary, the conversion of the South Boston waterfront to build the Innovation District takes us to the big redevelopment efforts with economic stimulus’ goals, traditionally linked to downtowns and led by government and economic elites (the local “growth machine”) through more technocratic processes (top-down planning). The research is based on a qualitative analysis of the processes of decision making and the relationship between those involved, as well as the evaluation of the implementation of those decisions and their influence on the resulting urban model. The analysis suggests that the governance of urban regeneration processes decisively influences the outcome of interventions; however, community engagement in the decision-making process is not enough for the result of the urban regeneration to counteract the effects of neoliberalization, especially if it is limited to the planning phase and does not extend to the implementation of the projects, and if it is not supported by a broader political mobilization to ensure a redistributive public action. Moreover, urban regeneration processes redefine the urban model, since the choice of intervention areas has important consequences for the territorial balance of the city. The results of this study have implications for the discipline of urban planning. On the one hand, it confirms the validity of the "negotiated planning" paradigm, albeit under public leadership discourse and without a direct appeal to the leadership role of the private sector. On the other hand, collaborative planning in a context of "responsibilization" of community based organizations can deactivate the political power of citizen participation and serve as a "buffer" towards the local government. Furthermore, the replacement of comprehensive planning, as a tool for defining the city's future, by an opportunistic planning based on intervention in strategic areas that are supposed to induce change in the rest of the city, does not allow a coherent and consensual urban model that is collectively desired, nor it allows to use planning as a redistribution mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When a firm decides to implement ERP softwares, the resulting consequences can pervade all levels, includ- ing organization, process, control and available information. Therefore, the first decision to be made is which ERP solution must be adopted from a wide range of offers and vendors. To this end, this paper describes a methodology based on multi-criteria factors that directly affects the process to help managers make this de- cision. This methodology has been applied to a medium-size company in the Spanish metal transformation sector which is interested in updating its IT capabilities in order to obtain greater control of and better infor- mation about business, thus achieving a competitive advantage. The paper proposes a decision matrix which takes into account all critical factors in ERP selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider a scenario where 3D scenes are modeled through a View+Depth representation. This representation is to be used at the rendering side to generate synthetic views for free viewpoint video. The encoding of both type of data (view and depth) is carried out using two H.264/AVC encoders. In this scenario we address the reduction of the encoding complexity of depth data. Firstly, an analysis of the Mode Decision and Motion Estimation processes has been conducted for both view and depth sequences, in order to capture the correlation between them. Taking advantage of this correlation, we propose a fast mode decision and motion estimation algorithm for the depth encoding. Results show that the proposed algorithm reduces the computational burden with a negligible loss in terms of quality of the rendered synthetic views. Quality measurements have been conducted using the Video Quality Metric.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the presence of a river flood, operators in charge of control must take decisions based on imperfect and incomplete sources of information (e.g., data provided by a limited number sensors) and partial knowledge about the structure and behavior of the river basin. This is a case of reasoning about a complex dynamic system with uncertainty and real-time constraints where bayesian networks can be used to provide an effective support. In this paper we describe a solution with spatio-temporal bayesian networks to be used in a context of emergencies produced by river floods. In the paper we describe first a set of types of causal relations for hydrologic processes with spatial and temporal references to represent the dynamics of the river basin. Then we describe how this was included in a computer system called SAIDA to provide assistance to operators in charge of control in a river basin. Finally the paper shows experimental results about the performance of the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a comparison of acquisition models related to decision analysis of IT supplier selection. The main standards are: Capability Maturity Model Integration for Acquisition (CMMI-ACQ), ISO / IEC 12207 Information Technology / Software Life Cycle Processes, IEEE 1062 Recommended Practice for Software Acquisition, the IT Infrastructure Library (ITIL) and the Project Management Body of Knowledge (PMBOK) guide. The objective of this paper is to compare the previous models to find the advantages and disadvantages of them for the future development of a decision model for IT supplier selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the advancement of both, information technology in general, and databases in particular; data storage devices are becoming cheaper and data processing speed is increasing. As result of this, organizations tend to store large volumes of data holding great potential information. Decision Support Systems, DSS try to use the stored data to obtain valuable information for organizations. In this paper, we use both data models and use cases to represent the functionality of data processing in DSS following Software Engineering processes. We propose a methodology to develop DSS in the Analysis phase, respective of data processing modeling. We have used, as a starting point, a data model adapted to the semantics involved in multidimensional databases or data warehouses, DW. Also, we have taken an algorithm that provides us with all the possible ways to automatically cross check multidimensional model data. Using the aforementioned, we propose diagrams and descriptions of use cases, which can be considered as patterns representing the DSS functionality, in regard to DW data processing, DW on which DSS are based. We highlight the reusability and automation benefits that this can be achieved, and we think this study can serve as a guide in the development of DSS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

First, this paper describes a future layered Air Traffic Management (ATM) system centred in the execution phase of flights. The layered ATM model is based on the work currently performed by SESAR [1] and takes into account the availability of accurate and updated flight information ?seen by all? across the European airspace. This shared information of each flight will be referred as Reference Business Trajectory (RBT). In the layered ATM system, exchanges of information will involve several actors (human or automatic), which will have varying time horizons, areas of responsibility and tasks. Second, the paper will identify the need to define the negotiation processes required to agree revisions to the RBT in the layered ATM system. Third, the final objective of the paper is to bring to the attention of researchers and engineers the communalities between multi-player games and Collaborative Decision Making processes (CDM) in a layered ATM system