2 resultados para computer-generated drawings
em Universidad Politécnica de Madrid
Resumo:
Commercial computer-aided design systems support the geometric definition of product, but they lack utilities to support initial design stages. Typical tasks such as customer need capture, functional requirement formalization, or design parameter definition are conducted in applications that, for instance, support ?quality function deployment? and ?failure modes and effects analysis? techniques. Such applications are noninteroperable with the computer-aided design systems, leading to discontinuous design information flows. This study addresses this issue and proposes a method to enhance the integration of design information generated in the early design stages into a commercial computer-aided design system. To demonstrate the feasibility of the approach adopted, a prototype application was developed and two case studies were executed.
Resumo:
A 2D computer simulation method of random packings is applied to sets of particles generated by a self-similar uniparametric model for particle size distributions (PSDs) in granular media. The parameter p which controls the model is the proportion of mass of particles corresponding to the left half of the normalized size interval [0,1]. First the influence on the total porosity of the parameter p is analyzed and interpreted. It is shown that such parameter, and the fractal exponent of the associated power scaling, are efficient packing parameters, but this last one is not in the way predicted in a former published work addressing an analogous research in artificial granular materials. The total porosity reaches the minimum value for p = 0.6. Limited information on the pore size distribution is obtained from the packing simulations and by means of morphological analysis methods. Results show that the range of pore sizes increases for decreasing values of p showing also different shape in the volume pore size distribution. Further research including simulations with a greater number of particles and image resolution are required to obtain finer results on the hierarchical structure of pore space.