4 resultados para computer assisted emission tomography

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We developed a new FPGA-based method for coincidence detection in positronemissiontomography. The method requires low device resources and no specific peripherals in order to resolve coincident digital pulses within a time window of a few nanoseconds. This method has been validated with a low-end Xilinx Spartan-3E and provided coincidence resolutions lower than 6 ns. This resolution depends directly on the signal propagation properties of the target device and the maximum available clock frequency, therefore it is expected to improve considerably on higher-end FPGAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Respiratory motion is a major source of reduced quality in positron emission tomography (PET). In order to minimize its effects, the use of respiratory synchronized acquisitions, leading to gated frames, has been suggested. Such frames, however, are of low signal-to-noise ratio (SNR) as they contain reduced statistics. Super-resolution (SR) techniques make use of the motion in a sequence of images in order to improve their quality. They aim at enhancing a low-resolution image belonging to a sequence of images representing different views of the same scene. In this work, a maximum a posteriori (MAP) super-resolution algorithm has been implemented and applied to respiratory gated PET images for motion compensation. An edge preserving Huber regularization term was used to ensure convergence. Motion fields were recovered using a B-spline based elastic registration algorithm. The performance of the SR algorithm was evaluated through the use of both simulated and clinical datasets by assessing image SNR, as well as the contrast, position and extent of the different lesions. Results were compared to summing the registered synchronized frames on both simulated and clinical datasets. The super-resolution image had higher SNR (by a factor of over 4 on average) and lesion contrast (by a factor of 2) than the single respiratory synchronized frame using the same reconstruction matrix size. In comparison to the motion corrected or the motion free images a similar SNR was obtained, while improvements of up to 20% in the recovered lesion size and contrast were measured. Finally, the recovered lesion locations on the SR images were systematically closer to the true simulated lesion positions. These observations concerning the SNR, lesion contrast and size were confirmed on two clinical datasets included in the study. In conclusion, the use of SR techniques applied to respiratory motion synchronized images lead to motion compensation combined with improved image SNR and contrast, without any increase in the overall acquisition times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A small Positron Emission Tomography demonstrator based on LYSO slabs and Silicon Photomultiplier matrices is under construction at the University and INFN of Pisa. In this paper we present the characterization results of the read-out electronics and of the detection system. Two SiPM matrices, composed by 8 × 8 SiPM pixels, 1.5 mm pitch, have been coupled one to one to a LYSO crystals array. Custom Front-End ASICs were used to read the 64 channels of each matrix. Data from each Front-End were multiplexed and sent to a DAQ board for the digital conversion; a motherboard collects the data and communicates with a host computer through a USB port. Specific tests were carried out on the system in order to assess its performance. Futhermore we have measured some of the most important parameters of the system for PET application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La segmentación de imágenes puede plantearse como un problema de minimización de una energía discreta. Nos enfrentamos así a una doble cuestión: definir una energía cuyo mínimo proporcione la segmentación buscada y, una vez definida la energía, encontrar un mínimo absoluto de la misma. La primera parte de esta tesis aborda el segundo problema, y la segunda parte, en un contexto más aplicado, el primero. Las técnicas de minimización basadas en cortes de grafos permiten obtener el mínimo de una energía discreta en tiempo polinomial mediante algoritmos de tipo min-cut/max-flow. Sin embargo, estas técnicas solo pueden aplicarse a energías que son representabas por grafos. Un importante reto es estudiar qué energías son representabas así como encontrar un grafo que las represente, lo que equivale a encontrar una función gadget con variables adicionales. En la primera parte de este trabajo se estudian propiedades de las funciones gadgets que permiten acotar superiormente el número de variables adicionales. Además se caracterizan las energías con cuatro variables que son representabas, definiendo gadgets con dos variables adicionales. En la segunda parte, más práctica, se aborda el problema de segmentación de imágenes médicas, base en muchas ocasiones para la diagnosis y el seguimiento de terapias. La segmentación multi-atlas es una potente técnica de segmentación automática de imágenes médicas, con tres aspectos importantes a destacar: el tipo de registro entre los atlas y la imagen objetivo, la selección de atlas y el método de fusión de etiquetas. Este último punto puede formularse como un problema de minimización de una energía. A este respecto introducimos dos nuevas energías representables. La primera, de orden dos, se utiliza en la segmentación en hígado y fondo de imágenes abdominales obtenidas mediante tomografía axial computarizada. La segunda, de orden superior, se utiliza en la segmentación en hipocampos y fondo de imágenes cerebrales obtenidas mediante resonancia magnética. ABSTRACT The image segmentation can be described as the problem of minimizing a discrete energy. We face two problems: first, to define an energy whose minimum provides the desired segmentation and, second, once the energy is defined we must find its global minimum. The first part of this thesis addresses the second problem, and the second part, in a more applied context, the first problem. Minimization techniques based on graph cuts find the minimum of a discrete energy in polynomial time via min-cut/max-flow algorithms. Nevertheless, these techniques can only be applied to graph-representable energies. An important challenge is to study which energies are graph-representable and to construct graphs which represent these energies. This is the same as finding a gadget function with additional variables. In the first part there are studied the properties of gadget functions which allow the number of additional variables to be bounded from above. Moreover, the graph-representable energies with four variables are characterised and gadgets with two additional variables are defined for these. The second part addresses the application of these ideas to medical image segmentation. This is often the first step in computer-assisted diagnosis and monitoring therapy. Multiatlas segmentation is a powerful automatic segmentation technique for medical images, with three important aspects that are highlighted here: the registration between the atlas and the target image, the atlas selection, and the label fusion method. We formulate the label fusion method as a minimization problem and we introduce two new graph-representable energies. The first is a second order energy and it is used for the segmentation of the liver in computed tomography (CT) images. The second energy is a higher order energy and it is used for the segmentation of the hippocampus in magnetic resonance images (MRI).