71 resultados para authomated aerial robots
em Universidad Politécnica de Madrid
Resumo:
Motivated by the growing interest in unmanned aerial system's applications in indoor and outdoor settings and the standardisation of visual sensors as vehicle payload. This work presents a collision avoidance approach based on omnidirectional cameras that does not require the estimation of range between two platforms to resolve a collision encounter. It will achieve a minimum separation between the two vehicles involved by maximising the view-angle given by the omnidirectional sensor. Only visual information is used to achieve avoidance under a bearing-only visual servoing approach. We provide theoretical problem formulation, as well as results from real flight using small quadrotors
Resumo:
In this paper, a system that allows applying precision agriculture techniques is described. The application is based on the deployment of a team of unmanned aerial vehicles that are able to take georeferenced pictures in order to create a full map by applying mosaicking procedures for postprocessing. The main contribution of this work is practical experimentation with an integrated tool. Contributions in different fields are also reported. Among them is a new one-phase automatic task partitioning manager, which is based on negotiation among the aerial vehicles, considering their state and capabilities. Once the individual tasks are assigned, an optimal path planning algorithm is in charge of determining the best path for each vehicle to follow. Also, a robust flight control based on the use of a control law that improves the maneuverability of the quadrotors has been designed. A set of field tests was performed in order to analyze all the capabilities of the system, from task negotiations to final performance. These experiments also allowed testing control robustness under different weather conditions.
Resumo:
Remote sensing (RS) with aerial robots is becoming more usual in every day time in Precision Agriculture (PA) practices, do to their advantages over conventional methods. Usually, available commercial platforms providing off-the-shelf waypoint navigation are adopted to perform visual surveys over crop fields, with the purpose to acquire specific image samples. The way in which a waypoint list is computed and dispatched to the aerial robot when mapping non empty agricultural workspaces has not been yet discussed. In this paper we propose an offline mission planner approach that computes an efficient coverage path subject to some constraints by decomposing the environment approximately into cells. Therefore, the aim of this work is contributing with a feasible waypoints-based tool to support PA practices
Resumo:
En esta tesis se presenta el desarrollo de un esquema de cooperación entre vehículos terrestres (UGV) y aéreos (UAV) no tripulados, que sirve de base para conformar dos flotas de robots autónomos (denominadas FRACTAL y RoMA). Con el fin de comprobar, en diferentes escenarios y con diferente tareas, la validez de las estrategias de coordinación y cooperación propuestas en la tesis se utilizan los robots de la flota FRACTAL, que sirven como plataforma de prueba para tareas como el uso de vehículos aéreos y terrestres para apoyar labores de búsqueda y rescate en zonas de emergencia y la cooperación de una flota de robots para labores agrícolas. Se demuestra además, que el uso de la técnica de control no lineal conocida como Control por Modos Deslizantes puede ser aplicada no solo para conseguir la navegación autónoma individual de un robot aéreo o terrestre, sino también en tareas que requieren la navegación coordinada y sin colisiones de varios robots en un ambiente compartido. Para esto, se conceptualiza teóricamente el uso de la técnica de Control por Modos Deslizantes como estrategia de coordinación entre robots, extendiendo su aplicación a robots no-holonómicos en R2 y a robots aéreos en el espacio tridimensional. Después de dicha contextualización teórica, se analizan las condiciones necesarias para determinar la estabilidad del sistema multi-robot controlado y, finalmente, se comprueban las características de estabilidad y robustez ofrecidas por esta técnica de control. Tales comprobaciones se hacen simulando la navegación segura y eficiente de un grupo de UGVs para la detección de posibles riesgos ambientales, aprovechando la información aportada por un UAV. Para estas simulaciones se utilizan los modelos matemáticos de robots de la flota RoMA. Estas tareas coordinadas entre los robots se hacen posibles gracias a la efectividad, estabilidad y robustez de las estrategias de control que se desarrollan como núcleo fundamental de este trabajo de investigación. ABSTRACT This thesis presents the development of a cooperation scheme between unmanned ground (UGV) and aerial (UAV) vehicles. This scheme is the basis for forming two fleets of autonomous robots (called FRACTAL and RoMA). In order to assess, in different settings and on different tasks, the validity of the coordination and cooperation strategies proposed in the thesis, the FRACTAL fleet robots serves as a test bed for tasks like using coordinated aerial and ground vehicles to support search and rescue work in emergency scenarios or cooperation of a fleet of robots for agriculture. It is also shown that using the technique of nonlinear control known as Sliding Modes Control (SMC) can be applied not only for individual autonomous navigation of an aircraft or land robot, but also in tasks requiring the coordinated navigation of several robots, without collisions, in a shared environment. To this purpose, a strategy of coordination between robots using Sliding Mode Control technique is theoretically conceptualized, extending its application to non-holonomic robots in R2 and aerial robots in three-dimensional space. After this theoretical contextualization, the stability conditions of multi-robot system are analyzed, and finally, the stability and robustness characteristics are validated. Such validations are made with simulated experiments about the safe and efficient navigation of a group of UGV for the detection of possible environmental hazards, taking advantage of the information provided by a UAV. This simulations are made using mathematical models of RoMA fleet robots. These coordinated tasks of robots fleet are made possible thanks to the effectiveness, stability and robustness of the control strategies developed as core of this research.
Resumo:
The road to the automation of the agricultural processes passes through the safe operation of the autonomous vehicles. This requirement is a fact in ground mobile units, but it still has not well defined for the aerial robots (UAVs) mainly because the normative and legislation are quite diffuse or even inexistent. Therefore, to define a common and global policy is the challenge to tackle. This characterization has to be addressed from the field experience. Accordingly, this paper presents the work done in this direction, based on the analysis of the most common sources of hazards when using UAV's for agricultural tasks. The work, based on the ISO 31000 normative, has been carried out by applying a three-step structure that integrates the identification, assessment and reduction procedures. The present paper exposes how this method has been applied to analyze previous accidents and malfunctions during UAV operations in order to obtain real failure causes. It has allowed highlighting common risks and hazardous sources and proposing specific guards and safety measures for the agricultural context.
Resumo:
En esta memoria se describe el trabajo de construcción de una arquitectura software diseñada para facilitar el desarrollo un planificador de misión de un vehículo aéreo no tripulado (UAV), con el fin de que éste alcance los objetivos marcados en la competición internacional de robótica IARC (séptima edición). A lo largo de la memoria, se describe en primer lugar, una revisión de técnicas de robótica inteligente aplicadas a la construcción de vehículos aéreos no tripulados, en el que se ven los diferentes paradigmas de programación de la robótica inteligente y la clasificación de dichos robots aéreos, dependiendo de su autonomía. Este descripción finaliza con la presentación del problema correspondiente a la competición IARC. A continuación se describe el diseño realizado para soporte al desarrollo de un planificador de misiones de UAVs, con simulación de comportamiento de vehículos robóticos y visualización 3D con movimiento. Finalmente, se muestran las pruebas que se han realizado para validar la construcción de dicha arquitectura software. ---ABSTRACT---In this report it is presented the construction of a software architecture, designed to facilitate the development of a mission planner for an unmanned aerial vehicle (UAV), so that it reaches the goals set in the International Aerial Robotics Competition - IARC (seventh edition). Throughout this report, it is described first, a review of intelligent robotics techniques applied to the construction of unmanned aerial vehicles, where different paradigms of intelligent robotics are seen, along with a classification of such aerial robots, depending on their autonomy. Description ends with the presentation of the problem corresponding to the IARC competition. Following, it is described the design made to satisfy the support to the development of a mission planner for UAV´s, with a simulation of the robotics vehicles’ behaviours and a 3D display with motion. Finally, we will deal with the tests that have been conducted to validate the construction of the software architecture.
Resumo:
La robótica ha evolucionado exponencialmente en las últimas décadas, permitiendo a los sistemas actuales realizar tareas sumamente complejas con gran precisión, fiabilidad y velocidad. Sin embargo, este desarrollo ha estado asociado a un mayor grado de especialización y particularización de las tecnologías implicadas, siendo estas muy eficientes en situaciones concretas y controladas, pero incapaces en entornos cambiantes, dinámicos y desestructurados. Por eso, el desarrollo de la robótica debe pasar por dotar a los sistemas de capacidad de adaptación a las circunstancias, de entendedimiento sobre los cambios observados y de flexibilidad a la hora de interactuar con el entorno. Estas son las caracteristicas propias de la interacción del ser humano con su entorno, las que le permiten sobrevivir y las que pueden proporcionar a un sistema inteligencia y capacidad suficientes para desenvolverse en un entorno real de forma autónoma e independiente. Esta adaptabilidad es especialmente importante en el manejo de riesgos e incetidumbres, puesto que es el mecanismo que permite contextualizar y evaluar las amenazas para proporcionar una respuesta adecuada. Así, por ejemplo, cuando una persona se mueve e interactua con su entorno, no evalúa los obstáculos en función de su posición, velocidad o dinámica (como hacen los sistemas robóticos tradicionales), sino mediante la estimación del riesgo potencial que estos elementos suponen para la persona. Esta evaluación se consigue combinando dos procesos psicofísicos del ser humano: por un lado, la percepción humana analiza los elementos relevantes del entorno, tratando de entender su naturaleza a partir de patrones de comportamiento, propiedades asociadas u otros rasgos distintivos. Por otro lado, como segundo nivel de evaluación, el entendimiento de esta naturaleza permite al ser humano conocer/estimar la relación de los elementos con él mismo, así como sus implicaciones en cuanto a nivel de riesgo se refiere. El establecimiento de estas relaciones semánticas -llamado cognición- es la única forma de definir el nivel de riesgo de manera absoluta y de generar una respuesta adecuada al mismo. No necesariamente proporcional, sino coherente con el riesgo al que se enfrenta. La investigación que presenta esta tesis describe el trabajo realizado para trasladar esta metodología de análisis y funcionamiento a la robótica. Este se ha centrado especialmente en la nevegación de los robots aéreos, diseñando e implementado procedimientos de inspiración humana para garantizar la seguridad de la misma. Para ello se han estudiado y evaluado los mecanismos de percepción, cognición y reacción humanas en relación al manejo de riesgos. También se ha analizado como los estímulos son capturados, procesados y transformados por condicionantes psicológicos, sociológicos y antropológicos de los seres humanos. Finalmente, también se ha analizado como estos factores motivan y descandenan las reacciones humanas frente a los peligros. Como resultado de este estudio, todos estos procesos, comportamientos y condicionantes de la conducta humana se han reproducido en un framework que se ha estructurado basadandose en factores análogos. Este emplea el conocimiento obtenido experimentalmente en forma de algoritmos, técnicas y estrategias, emulando el comportamiento humano en las mismas circunstancias. Diseñado, implementeado y validado tanto en simulación como con datos reales, este framework propone una manera innovadora -tanto en metodología como en procedimiento- de entender y reaccionar frente a las amenazas potenciales de una misión robótica. ABSTRACT Robotics has undergone a great revolution in the last decades. Nowadays this technology is able to perform really complex tasks with a high degree of accuracy and speed, however this is only true in precisely defined situations with fully controlled variables. Since the real world is dynamic, changing and unstructured, flexible and non context-dependent systems are required. The ability to understand situations, acknowledge changes and balance reactions is required by robots to successfully interact with their surroundings in a fully autonomous fashion. In fact, it is those very processes that define human interactions with the environment. Social relationships, driving or risk/incertitude management... in all these activities and systems, context understanding and adaptability are what allow human beings to survive: contrarily to the traditional robotics, people do not evaluate obstacles according to their position but according to the potential risk their presence imply. In this sense, human perception looks for information which goes beyond location, speed and dynamics (the usual data used in traditional obstacle avoidance systems). Specific features in the behaviour of a particular element allows the understanding of that element’s nature and therefore the comprehension of the risk posed by it. This process defines the second main difference between traditional obstacle avoidance systems and human behaviour: the ability to understand a situation/scenario allows to get to know the implications of the elements and their relationship with the observer. Establishing these semantic relationships -named cognition- is the only way to estimate the actual danger level of an element. Furthermore, only the application of this knowledge allows the generation of coherent, suitable and adjusted responses to deal with any risk faced. The research presented in this thesis summarizes the work done towards translating these human cognitive/reasoning procedures to the field of robotics. More specifically, the work done has been focused on employing human-based methodologies to enable aerial robots to navigate safely. To this effect, human perception, cognition and reaction processes concerning risk management have been experimentally studied; as well as the acquisition and processing of stimuli. How psychological, sociological and anthropological factors modify, balance and give shape to those stimuli has been researched. And finally, the way in which these factors motivate the human behaviour according to different mindsets and priorities has been established. This associative workflow has been reproduced by establishing an equivalent structure and defining similar factors and sources. Besides, all the knowledge obtained experimentally has been applied in the form of algorithms, techniques and strategies which emulate the analogous human behaviours. As a result, a framework capable of understanding and reacting in response to stimuli has been implemented and validated.
Resumo:
The International Aerial Robotics Competition (IARC) is an important event where teams from universities design flying autonomous vehicles to overcome the last challenges in the field. The goal of the Seventh Mission proposed by the IARC is to guide several mobile ground robots to a target area. The scenario is complex and not determinist due to the random behavior of the ground robots movement. The UAV must select efficient strategies to complete the mission. The goal of this work has been evaluating different alternative mission planning strategies of a UAV for this competition. The Mission Planner component is in charge of taking the UAV decisions. Different strategies have been developed and evaluated for the component, achieving a better performance Mission Planner and valuable knowledge about the mission. For this purpose, it was necessary to develop a simulator to evaluate the different strategies. The simulator was built as an improvement of an existing previous version.
Resumo:
The application of thematic maps obtained through the classification of remote images needs the obtained products with an optimal accuracy. The registered images from the airplanes display a very satisfactory spatial resolution, but the classical methods of thematic classification not always give better results than when the registered data from satellite are used. In order to improve these results of classification, in this work, the LIDAR sensor data from first return (Light Detection And Ranging) registered simultaneously with the spectral sensor data from airborne are jointly used. The final results of the thematic classification of the scene object of study have been obtained, quantified and discussed with and without LIDAR data, after applying different methods: Maximum Likehood Classification, Support Vector Machine with four different functions kernel and Isodata clustering algorithm (ML, SVM-L, SVM-P, SVM-RBF, SVM-S, Isodata). The best results are obtained for SVM with Sigmoide kernel. These allow the correlation with others different physical parameters with great interest like Manning hydraulic coefficient, for their incorporation in a GIS and their application in hydraulic modeling.
Resumo:
The complexity in the execution of cooperative tasks is high due to the fact that a robot team requires movement coordination at the beginning of the mission and continuous coordination during the execution of the task. A variety of techniques have been proposed to give a solution to this problem assuming standard mobile robots. This work focuses on presenting the execution of a cooperative task by a modular robot team. The complexity of the task execution increases due to the fact that each robot is composed of modules which have to be coordinated in a proper way to successfully work. A combined tight and loose cooperation strategy is presented and a bar-pushing example is used as a cooperative task to show the performance of this type of system.
Resumo:
This article presents a novel system and a control strategy for visual following of a 3D moving object by an Unmanned Aerial Vehicle UAV. The presented strategy is based only on the visual information given by an adaptive tracking method based on the color information, which jointly with the dynamics of a camera fixed to a rotary wind UAV are used to develop an Image-based visual servoing IBVS system. This system is focused on continuously following a 3D moving target object, maintaining it with a fixed distance and centered on the image plane. The algorithm is validated on real flights on outdoors scenarios, showing the robustness of the proposed systems against winds perturbations, illumination and weather changes among others. The obtained results indicate that the proposed algorithms is suitable for complex controls task, such object following and pursuit, flying in formation, as well as their use for indoor navigation
Resumo:
This work presents a solution for the aerial coverage of a field by using a fleet of aerial vehicles. The use of Unmanned Aerial Vehicles allows to obtain high resolution mosaics to be used in Precision Agriculture techniques. This report is focus on providing a solution for the full simultaneous coverage problem taking into account restrictions as the required spatial resolution and overlap while maintaining similar light conditions and safety operation of the drones. Results obtained from real field tests are finally reported
Resumo:
Remote sensed imagery acquired with mini aerial vehicles, in conjunction with GIS technology enable a meticulous analysis from surveyed agricultural sites. This paper sums up the ongoing work in area discretization and coverage with mini quad-?rotors applied to Precision Agriculture practices under the project RHEA.
Resumo:
In this paper, we seek to expand the use of direct methods in real-time applications by proposing a vision-based strategy for pose estimation of aerial vehicles. The vast majority of approaches make use of features to estimate motion. Conversely, the strategy we propose is based on a MR (Multi-Resolution) implementation of an image registration technique (Inverse Compositional Image Alignment ICIA) using direct methods. An on-board camera in a downwards-looking configuration, and the assumption of planar scenes, are the bases of the algorithm. The motion between frames (rotation and translation) is recovered by decomposing the frame-to-frame homography obtained by the ICIA algorithm applied to a patch that covers around the 80% of the image. When the visual estimation is required (e.g. GPS drop-out), this motion is integrated with the previous known estimation of the vehicles' state, obtained from the on-board sensors (GPS/IMU), and the subsequent estimations are based only on the vision-based motion estimations. The proposed strategy is tested with real flight data in representative stages of a flight: cruise, landing, and take-off, being two of those stages considered critical: take-off and landing. The performance of the pose estimation strategy is analyzed by comparing it with the GPS/IMU estimations. Results show correlation between the visual estimation obtained with the MR-ICIA and the GPS/IMU data, that demonstrate that the visual estimation can be used to provide a good approximation of the vehicle's state when it is required (e.g. GPS drop-outs). In terms of performance, the proposed strategy is able to maintain an estimation of the vehicle's state for more than one minute, at real-time frame rates based, only on visual information.
Resumo:
This article presents a visual servoing system to follow a 3D moving object by a Micro Unmanned Aerial Vehicle (MUAV). The presented control strategy is based only on the visual information given by an adaptive tracking method based on the colour information. A visual fuzzy system has been developed for servoing the camera situated on a rotary wing MAUV, that also considers its own dynamics. This system is focused on continuously following of an aerial moving target object, maintaining it with a fixed safe distance and centred on the image plane. The algorithm is validated on real flights on outdoors scenarios, showing the robustness of the proposed systems against winds perturbations, illumination and weather changes among others. The obtained results indicate that the proposed algorithms is suitable for complex controls task, such object following and pursuit, flying in formation, as well as their use for indoor navigation