5 resultados para amplification

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seeding plasma-based softx-raylaser (SXRL) demonstrated diffraction-limited, fully coherent in space and in time beam but with energy not exceeding 1 μJ per pulse. Quasi-steady-state (QSS) plasmas demonstrated to be able to store high amount of energy and then amplify incoherent SXRL up to several mJ. Using 1D time-dependant Bloch–Maxwell model including amplification of noise, we demonstrated that femtosecond HHG cannot be efficiently amplified in QSS plasmas. However, using Chirped Pulse Amplification concept on HHG seed allows to extract most of the stored energy, reaching up to 5 mJ in fully coherent pulses that can be compressed down to 130 fs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A straightforward unprecedented sublimation protocol that reveals both conversion of a racemic compound into a racemic conglomerate and subsequent enantioenrichment has been developed for the proteinogenic amino acid valine. The phenomenon has been observed in closed and open systems, providing insight into asymmetric amplification mechanisms under presumably prebiotic conditions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amplification of high-order harmonics (HOH) in a plasma-based amplifier is a multiscale, temporal phenomenon that couples plasma hydrodynamics, atomic processes, and HOH electromagnetic fields. We use a one-dimensional, time-dependent Maxwell-Bloch code to compare the natural amplification regime and another regime where plasma polarization is constantly forced by the HOH. In this regime, a 10-MW (i.e., 100 times higher than current seeded soft x-ray laser power), 1.5-μJ, 140-fs pulse free from the parasitic temporal structures appearing on the natural amplification regime can be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Top-Hat hot electron light emission and lasing in semiconductor heterostructure (HELLISH)-vertical cavity semiconductor optical amplifier (VCSOA) is a modified version of a HELLISH-VCSOA device. It has a shorter p-channel and longer n-channel. The device studied in this work consists of a simple GaAs p-i-n junction, containing 11 Ga0.35In0.65 N0.02As0.08/GaAs multiple quantum wells in its intrinsic region; the active region is enclosed between six pairs of GaAs/AlAs top distributed Bragg reflector (DBR) mirrors and 20.5 pairs of AlAs/GaAs bottom DBR mirrors. The operation of the device is based on longitudinal current transport parallel to the layers of the GaAs p-n junction. The device is characterised through I-V-L and by spectral photoluminescence, electroluminescence and electro-photoluminescence measurements. An amplification of about 25 dB is observed at applied voltages of around V = 88 V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method is presented that increases the sensitivity of ultrasound-based techniques for detection of bacteria. The technique was developed for the detection of catalase-positive microorganisms. It uses a bubble trapping medium containing hydrogen peroxide that is mixed with the sample for microbiological evaluation. The enzyme catalase is present in catalase-positive bacteria, which induces a rapid hydrolysis of hydrogen peroxide, forming bubbles which remain in the medium. This reaction results in the amplification of the mechanical changes that the microorganisms produce in the medium. The effect can be detected by means of ultrasonic wave amplitude continuous measurement since the bubbles increase the ultrasonic attenuation significantly. It is shown that microorganism concentrations of the order of 105 cells ml−1 can be detected using this method. This allows an improvement of three orders of magnitude in the ultrasonic detection threshold of microorganisms in conventional culture media, and is competitive with modern rapid microbiological methods. It can also be used for the characterization of the enzymatic activity.