3 resultados para V(2)O(5) xerogel
em Universidad Politécnica de Madrid
Resumo:
V2Ic control provides very fast dynamic performance to the Buck converter both under load steps and under voltage reference steps. However, the design of this control is complex since it is prone to subharmonic oscillations and several parameters affect the stability of the system. This paper derives and validates a very accurate modeling and stability analysis of a closed-loop V2Ic control using the Floquet theory. This allows the derivation of sensitivity analysis to design a robust converter. The proposed methodology is validated on a 5-MHz Buck converter. The work is also extended to V2 control using the same methodology, showing high accuracy and robustness. The paper also demonstrates, on the V2 control, that even a low bandwidth-linear controller can affect the stability of a ripple-based control.
Resumo:
Este libro ha sido escrito con el propósito de servir de texto a los estudiantes de la asignatura FUNDAMENTOS DE ORDENADORES en tercer curso del Plan de Estudios llamado "1.964 modificado" de la Escuela Técnica Superior de Ingenieros de Telecomunicación de Madrid, curso que hizo su debut en el período académico 1.977-78. De conformidad con este propósito se ha suprimido toda tendencia al lucimiento o a la erudición en aras de un mejor rendimiento didáctico de los conceptos básicos
Resumo:
The location of ground faults in railway electric lines in 2 × 5 kV railway power supply systems is a difficult task. In both 1 × 25 kV and transmission power systems it is common practice to use distance protection relays to clear ground faults and localize their positions. However, in the particular case of this 2 × 25 kV system, due to the widespread use of autotransformers, the relation between the distance and the impedance seen by the distance protection relays is not linear and therefore the location is not accurate enough. This paper presents a simple and economical method to identify the subsection between autotransformers and the conductor (catenary or feeder) where the ground fault is happening. This method is based on the comparison of the angle between the current and the voltage of the positive terminal in each autotransformer. Consequently, after the identification of the subsection and the conductor with the ground defect, only the subsection where the ground fault is present will be quickly removed from service, with the minimum effect on rail traffic. This method has been validated through computer simulations and laboratory tests with positive results.