10 resultados para Usage récréatif
em Universidad Politécnica de Madrid
Resumo:
The use of cloud computing is extending to all kind of systems, including the ones that are part of Critical Infrastructures, and measuring the reliability is becoming more difficult. Computing is becoming the 5th utility, in part thanks to the use of cloud services. Cloud computing is used now by all types of systems and organizations, including critical infrastructure, creating hidden inter-dependencies on both public and private cloud models. This paper investigates the use of cloud computing by critical infrastructure systems, the reliability and continuity of services risks associated with their use by critical systems. Some examples are presented of their use by different critical industries, and even when the use of cloud computing by such systems is not widely extended, there is a future risk that this paper presents. The concepts of macro and micro dependability and the model we introduce are useful for inter-dependency definition and for analyzing the resilience of systems that depend on other systems, specifically in the cloud model.
Resumo:
We present a method for the static resource usage analysis of MiniZinc models. The analysis can infer upper bounds on the usage that a MiniZinc model will make of some resources such as the number of constraints of a given type (equality, disequality, global constraints, etc.), the number of variables (search variables or temporary variables), or the size of the expressions before calling the solver. These bounds are obtained from the models independently of the concrete input data (the instance data) and are in general functions of sizes of such data. In our approach, MiniZinc models are translated into Ciao programs which are then analysed by the CiaoPP system. CiaoPP includes a parametric analysis framework for resource usage in which the user can define resources and express the resource usage of library procedures (and certain program construets) by means of a language of assertions. We present the approach and report on a preliminary implementation, which shows the feasibility of the approach, and provides encouraging results.
Resumo:
In an increasing number of applications (e.g., in embedded, real-time, or mobile systems) it is important or even essential to ensure conformance with respect to a specification expressing resource usages, such as execution time, memory, energy, or user-defined resources. In previous work we have presented a novel framework for data size-aware, static resource usage verification. Specifications can include both lower and upper bound resource usage functions. In order to statically check such specifications, both upper- and lower-bound resource usage functions (on input data sizes) approximating the actual resource usage of the program which are automatically inferred and compared against the specification. The outcome of the static checking of assertions can express intervals for the input data sizes such that a given specification can be proved for some intervals but disproved for others. After an overview of the approach in this paper we provide a number of novel contributions: we present a full formalization, and we report on and provide results from an implementation within the Ciao/CiaoPP framework (which provides a general, unified platform for static and run-time verification, as well as unit testing). We also generalize the checking of assertions to allow preconditions expressing intervals within which the input data size of a program is supposed to lie (i.e., intervals for which each assertion is applicable), and we extend the class of resource usage functions that can be checked.
Resumo:
Automatic cost analysis of programs has been traditionally concentrated on a reduced number of resources such as execution steps, time, or memory. However, the increasing relevance of analysis applications such as static debugging and/or certiflcation of user-level properties (including for mobile code) makes it interesting to develop analyses for resource notions that are actually application-dependent. This may include, for example, bytes sent or received by an application, number of files left open, number of SMSs sent or received, number of accesses to a datábase, money spent, energy consumption, etc. We present a fully automated analysis for inferring upper bounds on the usage that a Java bytecode program makes of a set of application programmer-deflnable resources. In our context, a resource is defined by programmer-provided annotations which state the basic consumption that certain program elements make of that resource. From these deflnitions our analysis derives functions which return an upper bound on the usage that the whole program (and individual blocks) make of that resource for any given set of input data sizes. The analysis proposed is independent of the particular resource. We also present some experimental results from a prototype implementation of the approach covering a signiflcant set of interesting resources.
Resumo:
Automatic cost analysis of programs has been traditionally studied in terms of a number of concrete, predefined resources such as execution steps, time, or memory. However, the increasing relevance of analysis applications such as static debugging and/or certification of user-level properties (including for mobile code) makes it interesting to develop analyses for resource notions that are actually applicationdependent. This may include, for example, bytes sent or received by an application, number of files left open, number of SMSs sent or received, number of accesses to a database, money spent, energy consumption, etc. We present a fully automated analysis for inferring upper bounds on the usage that a Java bytecode program makes of a set of application programmer-definable resources. In our context, a resource is defined by programmer-provided annotations which state the basic consumption that certain program elements make of that resource. From these definitions our analysis derives functions which return an upper bound on the usage that the whole program (and individual blocks) make of that resource for any given set of input data sizes. The analysis proposed is independent of the particular resource. We also present some experimental results from a prototype implementation of the approach covering an ample set of interesting resources.
Resumo:
Applications that operate on meshes are very popular in High Performance Computing (HPC) environments. In the past, many techniques have been developed in order to optimize the memory accesses for these datasets. Different loop transformations and domain decompositions are com- monly used for structured meshes. However, unstructured grids are more challenging. The memory accesses, based on the mesh connectivity, do not map well to the usual lin- ear memory model. This work presents a method to improve the memory performance which is suitable for HPC codes that operate on meshes. We develop a method to adjust the sequence in which the data are used inside the algorithm, by means of traversing and sorting the mesh. This sorted mesh can be transferred sequentially to the lower memory levels and allows for minimum data transfer requirements. The method also reduces the lower memory requirements dra- matically: up to 63% of the L1 cache misses are removed in a traditional cache system. We have obtained speedups of up to 2.58 on memory operations as measured in a general- purpose CPU. An improvement is also observed with se- quential access memories, where we have observed reduc- tions of up to 99% in the required low-level memory size.
Case study on mobile applications UX: effect of the usage of a crosss-platform development framework
Resumo:
Cross-platform development frameworks for mobile applications promise important advantages in cost cuttings and easy maintenance, posing as a very good option for organizations interested in the design of mobile applications for several platforms. Given that platform conventions are especially important for the User eXperience (UX) of mobile applications, the usage of framework where the same code defines the behavior of the app in different platforms could have negative impact in the UX. The objetive of this study is comparing the cross-platform and the native approach for being able to determine if the selected development approach has any impact on the users in terms of UX. To be able to set a base line under this subject, study on cross-platform frameworks was performed to select the most appropriate one from a UX point of view. In order to achieve the objectives of this work, two development teams have developed two versions of the same application; one using framework that generates Android and iOS versions automatically, and another team developing native versions of the same application. The alternative versions for each platform have been evaluated with 37 users with a combination of a laboratory usability test and a longitudinal study. The results show that differences are minimal in the Android version, but in iOS, even if a reasonable good UX can be obtained with the usage of this framework by an UX-conscious design team, a higher level of UX can be obtained directly developing in native code.
Resumo:
We present a novel general resource analysis for logic programs based on sized types. Sized types are representations that incorporate structural (shape) information and allow expressing both lower and upper bounds on the size of a set of terms and their subterms at any position and depth. They also allow relating the sizes of terms and subterms occurring at different argument positions in logic predicates. Using these sized types, the resource analysis can infer both lower and upper bounds on the resources used by all the procedures in a program as functions on input term (and subterm) sizes, overcoming limitations of existing resource analyses and enhancing their precision. Our new resource analysis has been developed within the abstract interpretation framework, as an extension of the sized types abstract domain, and has been integrated into the Ciao preprocessor, CiaoPP. The abstract domain operations are integrated with the setting up and solving of recurrence equations for inferring both size and resource usage functions. We show that the analysis is an improvement over the previous resource analysis present in CiaoPP and compares well in power to state of the art systems.
Resumo:
Personal data about users (customers) is a key component for enterprises and large organizations. Its correct analysis and processing can produce relevant knowledge to achieve different business goals. For example, the monetisation of this data has become a valuable asset for many companies, such as Google, Facebook or Twitter, that obtain huge profits mainly from targeted advertising.
Resumo:
It has been shown that cloud computing brings cost benefits and promotes efficiency in the operations of the organizations, no matter what their type or size. However, few public organizations are benefiting from this new paradigm shift in the way the organizations consume and manage computational resources. The objective of this thesis is to analyze both internal and external factors that may influence the adoption of cloud computing by public organizations and propose possible strategies that can assist these organizations in their path to cloud usage. In order to achieve this objective, a SWOT analysis has been conducted, detecting internal factors (strengths and weaknesses) and external factors (opportunities and threats) that can influence the adoption of a governmental cloud. With the application of a TOWS matrix, by combining the internal and external factors, a list of possible strategies have been formulated to be used as a guide to decision-making related to the transition to a cloud environment.