6 resultados para Teaching and learning processes
em Universidad Politécnica de Madrid
Resumo:
This paper presents ASYTRAIN, a new tool to teach and learn antennas, based on the use of a modular building kit and a low cost portable antenna measurement system that lets the students design and build different types of antennas and observe their characteristics while learning the insights of the subjects. This tool has a methodology guide for try-and-test project development and, makes the students be active antenna engineers instead of passive learners. This experimental learning method arises their motivation during the antenna courses.
Resumo:
Computer programming is known to be one of the most difficult courses for students in the first year of engineering. They are faced with the challenge of abstract thinking and gaining programming skills for the first time. These skills are acquired by continuous practicing from the start of the course. In order to enhance the motivation and dynamism of the learning and assessment processes, we have proposed the use of three educational resources namely screencasts, self-assessment questionnaires and automated grading of assignments. These resources have been made available in Moodle which is a Learning Management System widely used in education environments and adopted by the Telecommunications Engineering School at the Universidad Politécnica de Madrid (UPM). Both teachers and students can enhance the learning and assessment processes through the use of new educational activities such as self-assessment questionnaires and automated grading of assignments. On the other hand, multimedia resources such as screencasts can guide students in complex topics. The resources proposed allow teachers to improve their tutorial actions since they provide immediate feedback and comments to students without the enormous effort of manual correction and evaluation by teachers specially taking into account the large number of students enrolled in the course. In this paper we present the case study where three proposed educational resources were applied. We describe the special features of the course and explain why the use of these resources can both enhance the students? motivation and improve the teaching and learning processes. Our research work was carried out on students attending the "Computer programming" course offered in the first year of a Telecommunications Engineering degree at UPM. This course is mandatory and has more than 450 enrolled students. Our purpose is to encourage the motivation and dynamism of the learning and assessment processes.
Resumo:
Los Recursos Educativos Abiertos (REA) y los Cursos Educativos Abiertos (OCW) son utilizados como apoyo para los procesos de enseñanza aprendizaje; el carácter de abierto de estos recursos contribuye a la difusión de conocimiento y facilita el acceso a la información. Existe una gran cantidad de universidades e instituciones de educación superior que se han unido al movimiento abierto, poniendo a disposición los OCW que sus docentes realizan para los estudiantes formales, sin embargo se ha detectado que no existe un proceso estándar en la producción de OCW ya que cada universidad lo realiza con modelos propios de acuerdo a las normativas institucionales. Por lo cual en este trabajo de tesis doctoral se propone un modelo de producción de REA y OCW, denominado REACS que contempla el uso de un modelo de diseño instruccional que permite realizar un proceso sistemático de actividades que contribuyen al aprendizaje; además de la utilización de herramientas sociales y herramientas semánticas que aportan al trabajo colaborativo e identificación de los recursos por su significado, lo cual aporta a la inteligencia colectiva. REACS fue comparado con procesos de producción similares de las universidades relevantes del movimiento OCW, además de ser implementado en un caso de estudio con tres fases en la creación de OCW para una institución de educación superior. Con esta validación se pudo comprobar que REACS aportaba a incrementar el número de estudiantes que aprueban un curso y disminuye el tiempo de producción y publicación de un OCW. ABSTRACT Open Educational Resources (OER) and Open Course Ware (OCW) are used as support for teaching and learning processes; the open characteristic of these resources contributes to the diffusion of knowledge and facilitates the access to information. There are an important number of universities and institutions of higher education have joined to the open movement, making available the OCW´s for formal students. However, it has been found that there is not a standard process for the production of OCW and each university develop these with their own models according to their institutional regulations. Therefore, this doctoral thesis proposes REACS, a production model of OER and OCW that contemplates the use of an instructional design model that allows a systematic process of activities that contribute to learning. REACS includes the use of social tools and semantic tools that provide collaborative and identification of resources based in their meaning, contributing with the collective intelligence. REACS was compared with similar production processes belonging to relevant universities in the OCW movement. Additionally OCW were produced using REACS in a study case developed in three stages. With these validations, it was found that REACS contributed to increasing the student approved ratio and the OCW production and publication times were reduced.
Resumo:
This paper presents a methodology for the incorporation of a Virtual Reality development applied to the teaching of manufacturing processes, namely the group of machining processes in numerical control of machine tools. The paper shows how it is possible to supplement the teaching practice through virtual machine-tools whose operation is similar to the 'real' machines while eliminating the risks of use for both users and the machines.
Resumo:
Abstract: This paper summarizes the evolution of different subjects of English for Specific Purposes and English for Academic and Professional Purposes. The aim here is to show a continuum of changes that have not started and nished in one subject alone but affect the whole curriculum. After the discussion section where advantages and drawbacks of the changes introduced are analyzed, we arrive at some conclusions regarding this ve year period of development in the approach to the teaching and learning of the specific or academic English language in the Escuela Universitaria de Ingeniería Técnica de Telecomunicación, Universidad Politécnica de Madrid. Resumen: Este trabajo resume la evolución que han experimentado distintas asignaturas de Inglés para Fines Especí cos e Inglés para Fines Académicos y Profesionales. El objetivo principal es mostrar cómo el esfuerzo por mejorar las asignaturas afecta al currículo como un todo y no sólo a cada una de las asignaturas. Tras el análisis de algunas de las ventajas e inconvenientes de los cambios introducidos, se alcanzan algunas conclusiones sobre la evolución que han sufrido este tipo de asignaturas durante los últimos cinco años en la Escuela Universitaria de Ingeniería Técnica de Telecomunicación, Universidad Politécnica de Madrid.
Resumo:
The study of the response of mechanical systems to external excitations, even in the simplest cases, involves solving second-order ordinary differential equations or systems thereof. Finding the natural frequencies of a system and understanding the effect of variations of the excitation frequencies on the response of the system are essential when designing mechanisms [1] and structures [2]. However, faced with the mathematical complexity of the problem, students tend to focus on the mathematical resolution rather than on the interpretation of the results. To overcome this difficulty, once the general theoretical problem and its solution through the state space [3] have been presented, Matlab®[4] and Simulink®[5] are used to simulate specific situations. Without them, the discussion of the effect of slight variations in input variables on the outcome of the model becomes burdensome due to the excessive calculation time required. Conversely, with the help of those simulation tools, students can easily reach practical conclusions and their evaluation can be based on their interpretation of results and not on their mathematical skills