3 resultados para Teaching and learning history
em Universidad Politécnica de Madrid
Resumo:
This paper presents ASYTRAIN, a new tool to teach and learn antennas, based on the use of a modular building kit and a low cost portable antenna measurement system that lets the students design and build different types of antennas and observe their characteristics while learning the insights of the subjects. This tool has a methodology guide for try-and-test project development and, makes the students be active antenna engineers instead of passive learners. This experimental learning method arises their motivation during the antenna courses.
Resumo:
Abstract: This paper summarizes the evolution of different subjects of English for Specific Purposes and English for Academic and Professional Purposes. The aim here is to show a continuum of changes that have not started and nished in one subject alone but affect the whole curriculum. After the discussion section where advantages and drawbacks of the changes introduced are analyzed, we arrive at some conclusions regarding this ve year period of development in the approach to the teaching and learning of the specific or academic English language in the Escuela Universitaria de Ingeniería Técnica de Telecomunicación, Universidad Politécnica de Madrid. Resumen: Este trabajo resume la evolución que han experimentado distintas asignaturas de Inglés para Fines Especí cos e Inglés para Fines Académicos y Profesionales. El objetivo principal es mostrar cómo el esfuerzo por mejorar las asignaturas afecta al currículo como un todo y no sólo a cada una de las asignaturas. Tras el análisis de algunas de las ventajas e inconvenientes de los cambios introducidos, se alcanzan algunas conclusiones sobre la evolución que han sufrido este tipo de asignaturas durante los últimos cinco años en la Escuela Universitaria de Ingeniería Técnica de Telecomunicación, Universidad Politécnica de Madrid.
Resumo:
The study of the response of mechanical systems to external excitations, even in the simplest cases, involves solving second-order ordinary differential equations or systems thereof. Finding the natural frequencies of a system and understanding the effect of variations of the excitation frequencies on the response of the system are essential when designing mechanisms [1] and structures [2]. However, faced with the mathematical complexity of the problem, students tend to focus on the mathematical resolution rather than on the interpretation of the results. To overcome this difficulty, once the general theoretical problem and its solution through the state space [3] have been presented, Matlab®[4] and Simulink®[5] are used to simulate specific situations. Without them, the discussion of the effect of slight variations in input variables on the outcome of the model becomes burdensome due to the excessive calculation time required. Conversely, with the help of those simulation tools, students can easily reach practical conclusions and their evaluation can be based on their interpretation of results and not on their mathematical skills