42 resultados para Suspension Bridge
em Universidad Politécnica de Madrid
Resumo:
Implantación de la Red de Alta velocidad Ferroviaria en California. Tramo San Francisco-Sacramento. Este artículo de la serie “Alta velocidad Ferroviaria en California (CHSRS), se ocupa de la línea San Francisco– Sacramento “Bay Crossing Alternative”, que cierra la red de alta velocidad ferroviaria del Estado de California, permitiendo en la terminal HSR de Sacramento, conectar con la línea Fresno–Sacramento, en coincidencia de trazados para en el futuro prolongar la red californiana de alta velocidad ferroviaria hasta su entronque con la del Estado de Nevada, vía Tahoe Lake–Reno. La línea San Francisco–Sacramento “Bay Crossing Alternative”, consta de tres trayectos: El primero de ellos “San Francisco urbano” va desde la terminal HSR “San Francisco Airport”, donde termina la alternativa “Golden Gate” de la línea Fresno–San Francisco, hasta el viaducto de acceso al Paso de la Bahía, que constituye el segundo trayecto “San Francisco–Richmond”, trayecto estrella de la red, de 15,48 Km de longitud sobre la Bahía de San Francisco, con desarrollo a través de 11,28 Km en puente colgante múltiple, con vanos de 800 m de luz y 67 m de altura libre bajo el tablero que permite la navegación en la Bahía. El tercer trayecto “Richmond–Sacramento” cruza la Bahía de San Pablo con un puente colgante de 1,6 Km de longitud y tipología similar a los múltiples de la Bahía de San Francisco, pasa por Vallejo (la por plazo breve de tiempo, antigua capital del Estado de California) y por la universitaria Davis, antes de finalmente llegar a la HSR Terminal Station de Sacramento Roseville. This article of the series “California High Speed Railway System”(CHSRS) treats on Line San Francisco–Sacramento “Bay Crossing Alternative” (BCA). This line closes the system of California high speed state railway, and connects with the line Fresno–Sacramento “Stockton Arch Alternative”, joining its alignments in the HSR Terminal of Sacramento Roseville. From this station it will be possible, in the future, to extend the Californian railway system till the Nevada railway system, vía Tahoe Lake and Reno. The BCA consists of three sections: The first one passing through San Francisco city, goes from HSR San Francisco Airport Terminal Station (where the line Fresno–San Francisco “Golden Gate Alternative” ends), up to the Viaduct access at the Bay Crossing. The second section San Francisco–Richmond, constitutes the star section of the system, with 15,48 Km length on the San Francisco Bay, where 11,28 Km in multi suspension bridge, 800 m span and 67 m gauge under panel, to allow navigation through the Bay. The third section Richmond–Sacramento crosses the San Pablo Bay through another suspension bridge of similar typology to that of San Francisco Bay crossing; pass through Vallejo (the ancient and for a short time Head of the State of California) and through Davis, university city, to arrive to the HSR Terminal Station of Sacramento Roseville.
Resumo:
The advantages of tabled evaluation regarding program termination and reduction of complexity are well known —as are the significant implementation, portability, and maintenance efforts that some proposals (especially those based on suspension) require. This implementation effort is reduced by program transformation-based continuation call techniques, at some efficiency cost. However, the traditional formulation of this proposal by Ramesh and Cheng limits the interleaving of tabled and non-tabled predicates and thus cannot be used as-is for arbitrary programs. In this paper we present a complete translation for the continuation call technique which, using the runtime support needed for the traditional proposal, solves these problems and makes it possible to execute arbitrary tabled programs. We present performance results which show that CCall offers a useful tradeoff that can be competitive with state-of-the-art implementations.
Resumo:
Underspanned suspension bridges are structures with important economical and aesthetic advantages, due to their high structural efficiency. However, road bridges of this typology are still uncommon because of limited knowledge about this structural system. In particular, there remains some uncertainty over the dynamic behaviour of these bridges, due to their extreme lightness. The vibrations produced by vehicles crossing the viaduct are one of the main concerns. In this work, traffic-induced dynamic effects on this kind of viaduct are addressed by means of vehicle-bridge dynamic interaction models. A finite element method is used for the structure, and multibody dynamic models for the vehicles, while interaction is represented by means of the penalty method. Road roughness is included in this model in such a way that the fact that profiles under left and right tyres are different, but not independent, is taken into account. In addition, free software {PRPgenerator) to generate these profiles is presented in this paper. The structural dynamic sensitivity of underspanned suspension bridges was found to be considerable, as well as the dynamic amplification factors and deck accelerations. It was also found that vehicle speed has a relevant influence on the results. In addition, the impact of bridge deformation on vehicle vibration was addressed, and the effect on the comfort of vehicle users was shown to be negligible.
Resumo:
The structural continuity of fully integral bridges entails many advantages and some drawbacks. Among the latter, the cyclic expansions and contractions of the deck caused by seasonal thermal variations impose alternating displacements at the piers and abutments, with effects that may be difficult to establish reliably. The advantages include easier construction and cheaper maintenance but, especially, horizontal loads can be transmitted to the ground in a much better way than in conventional bridges. This paper first presents a methodology for dealing with the problems that the cyclic displacements imposed raise at the abutments and at the bridge piers. At the former, large pressures may develop, possibly accompanied by undesirable surface settlements. At the latter, the degree of cracking and the ability to carry the specified loads may be in question. Having quantified the drawbacks, simplified but realistic analyses are conducted of the response of an integral bridge to braking and seismic loads. It is shown that integral bridges constitute an excellent alternative in the context of the requirements posed by new high-speed railway lines.
Resumo:
When an automobile passes over a bridge dynamic effects are produced in vehicle and structure. In addition, the bridge itself moves when exposed to the wind inducing dynamic effects on the vehicle that have to be considered. The main objective of this work is to understand the influence of the different parameters concerning the vehicle, the bridge, the road roughness or the wind in the comfort and safety of the vehicles when crossing bridges. Non linear finite element models are used for structures and multibody dynamic models are employed for vehicles. The interaction between the vehicle and the bridge is considered by contact methods. Road roughness is described by the power spectral density (PSD) proposed by the ISO 8608. To consider that the profiles under right and left wheels are different but not independent, the hypotheses of homogeneity and isotropy are assumed. To generate the wind velocity history along the road the Sandia method is employed. The global problem is solved by means of the finite element method. First the methodology for modelling the interaction is verified in a benchmark. Following, the case of a vehicle running along a rigid road and subjected to the action of the turbulent wind is analyzed and the road roughness is incorporated in a following step. Finally the flexibility of the bridge is added to the model by making the vehicle run over the structure. The application of this methodology will allow to understand the influence of the different parameters in the comfort and safety of road vehicles crossing wind exposed bridges. Those results will help to recommend measures to make the traffic over bridges more reliable without affecting the structural integrity of the viaduct
Resumo:
There are large numbers of business communities in India which neither had any formal education nor they took any professional training but still they contribute in successful business formation. Their presence can be felt in all areas of business. Still there is a big professional gap between the educational institutes, specially the B-Schools and this independent business community. With the help of this paper an effort is made to develop a Two-Way learning relationship for the mutual benefit of both entities. It will also highlight the role of an educational institute beyond academics for the well being of society. This may lead to derive and develop the exchange of innovative business ideas and framing the suitable policies for long term sustainability in today´s competitive arena. The study conducted by researcher with a sample size of 100 which includes a mix of well known academic professionals, MBA students and non academic business professionals has revealed that there is a need of an exchange program for the mutual benefits. There exists a big professional gap in this area which can be filled with the active and effective initiative by management institutes. An effort is made in this paper to highlight this gap and to suggest some framework to bridge the gap
Resumo:
The experimental results obtained in experiment “STACO” made on board the Spacelab D-2 are re-visited, with image-analysis tools not then available. The configuration consisted of a liquid bridge between two solid supporting discs. An expected breakage occurred during the experiment. The recorded images are analysed and the measured behaviour compared with the results of a three dimensional model of the liquid dynamics, obtaining a much better fit than with linear models
Resumo:
Strong motion records obtained in instrumented short-span bridges show the importance of the abutments in the dynamic response of the structure. Existing models study the pier foundation influence but not the abutment performance. This work proposes two and three dimensional boundary element models in the frequency domain and studies the dimensionless dynamic stiffness of standard bridge abutments.
Resumo:
The soil-structure interaction at bridge abutments may introduce important changes in the dynamic properties of short to medium span bridges. The paper presents the results obtained, through the use of the Boundary Element Method (B.E.M.) technique in several typical situations, including semiinfinite and layered media. Both stiffness and damping properties are included.
Resumo:
A simplified model is proposed to show the importance that the dynamic soil-abutment interaction can have in the global behavior of bridges submitted to seismic loading. The modification of natural frequency and damping properties is shown in graphic form for typical short span bridges of the integral deck-abutment type for longitudinal vibrations or general ones for transverse vibrations.
Resumo:
The new highway M-410 in Madrid was constructed in the year 2007. This motorway near to Parla city crosses the road from Madrid to Toledo. To solve this crossing it was needed to constructed three bridges, the central with two spans over de existing motorway and the other two with one span at each side of the previous one. All the bridges where with deep foundations with piles of 1,00 m diameter separated 1,25 m.
Resumo:
The response of high-speed bridges at resonance, particularly under flexural vibrations, constitutes a subject of research for many scientists and engineers at the moment. The topic is of great interest because, as a matter of fact, such kind of behaviour is not unlikely to happen due to the elevated operating speeds of modern rains, which in many cases are equal to or even exceed 300 km/h ( [1,2]). The present paper addresses the subject of the evolution of the wheel-rail contact forces during resonance situations in simply supported bridges. Based on a dimensionless formulation of the equations of motion presented in [4], very similar to the one introduced by Klasztorny and Langer in [3], a parametric study is conducted and the contact forces in realistic situations analysed in detail. The effects of rail and wheel irregularities are not included in the model. The bridge is idealised as an Euler-Bernoulli beam, while the train is simulated by a system consisting of rigid bodies, springs and dampers. The situations such that a severe reduction of the contact force could take place are identified and compared with typical situations in actual bridges. To this end, the simply supported bridge is excited at resonace by means of a theoretical train consisting of 15 equidistant axles. The mechanical characteristics of all axles (unsprung mass, semi-sprung mass, and primary suspension system) are identical. This theoretical train permits the identification of the key parameters having an influence on the wheel-rail contact forces. In addition, a real case of a 17.5 m bridges traversed by the Eurostar train is analysed and checked against the theoretical results. The influence of three fundamental parameters is investigated in great detail: a) the ratio of the fundamental frequency of the bridge and natural frequency of the primary suspension of the vehicle; b) the ratio of the total mass of the bridge and the semi-sprung mass of the vehicle and c) the ratio between the length of the bridge and the characteristic distance between consecutive axles. The main conclusions derived from the investigation are: The wheel-rail contact forces undergo oscillations during the passage of the axles over the bridge. During resonance, these oscillations are more severe for the rear wheels than for the front ones. If denotes the span of a simply supported bridge, and the characteristic distance between consecutive groups of loads, the lower the value of , the greater the oscillations of the contact forces at resonance. For or greater, no likelihood of loss of wheel-rail contact has been detected. The ratio between the frequency of the primary suspension of the vehicle and the fundamental frequency of the bridge is denoted by (frequency ratio), and the ratio of the semi-sprung mass of the vehicle (mass of the bogie) and the total mass of the bridge is denoted by (mass ratio). For any given frequency ratio, the greater the mass ratio, the greater the oscillations of the contact forces at resonance. The oscillations of the contact forces at resonance, and therefore the likelihood of loss of wheel-rail contact, present a minimum for approximately between 0.5 and 1. For lower or higher values of the frequency ratio the oscillations of the contact forces increase. Neglecting the possible effects of torsional vibrations, the metal or composite bridges with a low linear mass have been found to be the ones where the contact forces may suffer the most severe oscillations. If single-track, simply supported, composite or metal bridges were used in high-speed lines, and damping ratios below 1% were expected, the minimum contact forces at resonance could drop to dangerous values. Nevertheless, this kind of structures is very unusual in modern high-speed railway lines.
Resumo:
The B.E. technique is applied to an interesting dynamic problem: the interaction between bridges and their abutments. Several two-dimensional cases have been tested in relation with previously published analytical results. A three-dimensional case is also shown and different considerations in relation with the accuracy of the method are described.
Resumo:
This paper presents an adaptive control for the auxiliary circuit, called ARCN (Auxiliary Resonant Commutating Network), used to achieve ZVS in full active bridge converters under a wide load range. Depending on the load conditions, the proposed control adapts the timing of the ARCN to minimize the losses. The principle of operation and implementation considerations are presented for a three phase full active bridge converter, proposing different methods to implement the control according to the specifications. The experimental results shown verify the proposed methodology.
Resumo:
During the years 2004 and 2005 is has been constructed in Barajas airport of Madrid a special bridge for the new plane AIRBUS A380. This new airplane has a weight of 1,500,000 pounds and 18 wheels with a reaction of 39.2 tonnes per each one and the braking force is about 600 tonnes. The enormous loads transmitted for the airplane made this bridge a special structure. The present article exposes the most important characteristics of project and construction, of one of the special bridges in the airport Brajas of Madri. This bridge was constructed for the access to the hangar of airplanes in Barajas, known "La Muñoza". The structure has a width of 48m, two spans of 13 m each one and a vertical clearance of 5.50 m to allow passing vehicles under it, along thhe new motorway in Brajas (Madrid).