8 resultados para Scale Factor

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using the relation proposed by Weinberg in 1972, combining quantum and cosmological parameters, we prove that the self gravitational potential energy of any fundamental particle is a quantum, with physical properties independent of the mass of the particle. It is a universal quantum of gravitational energy, and its physical properties depend only on the cosmological scale factor R and the physical constants ℏ and c. We propose a modification of the Weinberg’s relation, keeping the same numerical value, but substituting the cosmological parameter H/c by 1/R.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Combining the kinematical definitions of the two dimensionless parameters, the deceleration q(x) and the Hubble t 0 H(x), we get a differential equation (where x=t/t 0 is the age of the universe relative to its present value t 0). First integration gives the function H(x). The present values of the Hubble parameter H(1) [approximately t 0 H(1)≈1], and the deceleration parameter [approximately q(1)≈−0.5], determine the function H(x). A second integration gives the cosmological scale factor a(x). Differentiation of a(x) gives the speed of expansion of the universe. The evolution of the universe that results from our approach is: an initial extremely fast exponential expansion (inflation), followed by an almost linear expansion (first decelerated, and later accelerated). For the future, at approximately t≈3t 0 there is a final exponential expansion, a second inflation that produces a disaggregation of the universe to infinity. We find the necessary and sufficient conditions for this disaggregation to occur. The precise value of the final age is given only with one parameter: the present value of the deceleration parameter [q(1)≈−0.5]. This emerging picture of the history of the universe represents an important challenge, an opportunity for the immediate research on the Universe. These conclusions have been elaborated without the use of any particular cosmological model of the universe

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this talk we would like to analyse the appearance of singularities in FLRW cosmological models which evolve close to w = -1, where w is the barotropic index of the universe. We relate small terms in cosmological time around w = -1 with the correspondent scale factor of the universe and check for the formation of singularities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Pseudo-Dynamic Test Method (PDTM) is being developped currently as an alternative to the shaking table testing of large size models. However, the stepped slow execution of the former type of test has been found to be the source of important errors arising from the stress relaxation. A new continuous test method, wich allows the selection of a suitable time-scale factor in the response in order to control these errors, es proposed here. Such scaled-time response is theoretically obtained by simply augmenting the mass of the structure for wich some practical solutions are proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The stepped and excessively slow execution of pseudo-dynamic tests has been found to be the source of some errors arising from strain-rate effect and stress relaxation. In order to control those errors, a new continuous test method which allows the selection of a more suitable time scale factor in the response is proposed in this work. By dimensional analysis, such scaled-time response is obtained theoretically by augmenting the inertial and damping properties of the structure, for which we propose the use of hydraulic pistons which are servo-controlled to produce active mass and damping, nevertheless using an equipment which is similar to that required in a pseudo-dynamic test. The results of the successful implementation of this technique for a simple specimen are shown here.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DELLA proteins are the master negative regulators in gibberellin (GA) signaling acting in the nucleus as transcriptional regulators. The current view of DELLA action indicates that their activity relies on the physical interaction with transcription factors (TFs). Therefore, the identification of TFs through which DELLAs regulate GA responses is key to understanding these responses from a mechanistic point of view. Here, we have determined the TF interactome of the Arabidopsis (Arabidopsis thaliana) DELLA protein GIBBERELLIN INSENSITIVE and screened a collection of conditional TF overexpressors in search of those that alter GA sensitivity. As a result, we have found RELATED TO APETALA2.3, an ethylene-induced TF belonging to the group VII ETHYLENE RESPONSE FACTOR of the APETALA2/ethylene responsive element binding protein superfamily, as a DELLA interactor with physiological relevance in the context of apical hook development. The combination of transactivation assays and chromatin immunoprecipitation indicates that the interaction with GIBBERELLIN INSENSITIVE impairs the activity of RELATED TO APETALA2.3 on the target promoters. This mechanism represents a unique node in the cross regulation between the GA and ethylene signaling pathways controlling differential growth during apical hook development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper shows the importance of a holistic comprehension of the Earth as a living planet, where man inhabits and is exposed to environmental incidences of different nature. The aim of the paper here summarized is a reflection on all these concepts and scientific considerations related to the important role of men in the handling of natural hazards. Our Planet is an unstable and dynamical system highly sensitive to initial conditions, as proposed by Chaos theory (González-Miranda 2004); it is a complex organic whole, which responds to minimal variations which can affect several natural phenomena such as plate tectonics, solar flares, fluid turbulences, landscape formation, forest fires, growth and migration of populations and biological evolution. This is known as the “butterfly effect” (Lorenz 1972), which means that a small change of the system causes a chain of events leading to large-scale unpredictable consequences. The aim of this work is dwelling on the importance of the knowledge of these natural and catastrophic geological, biological and human systems so much sensible to equilibrium conditions, to prevent, avoid and mend their effects, and to face them in a resilient way

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Limit equilibrium is a common method used to analyze the stability of a slope, and minimization of the factor of safety or identification of critical slip surfaces is a classical geotechnical problem in the context of limit equilibrium methods for slope stability analyses. A mutative scale chaos optimization algorithm is employed in this study to locate the noncircular critical slip surface with Spencer’s method being employed to compute the factor of safety. Four examples from the literature—one homogeneous slope and three layered slopes—are employed to identify the efficiency and accuracy of this approach. Results indicate that the algorithm is flexible and that although it does not generally provide the minimum FS, it provides results that are close to the minimum, an improvement over other solutions proposed in the literature and with small relative errors with respect to other minimum factor of safety (FS) values reported in the literature.