14 resultados para Satellite selection algorithm
em Universidad Politécnica de Madrid
Resumo:
El presente proyecto tiene el objetivo de facilitar la composición de canciones mediante la creación de las distintas pistas MIDI que la forman. Se implementan dos controladores. El primero, con objeto de transcribir la parte melódica, convierte la voz cantada o tarareada a eventos MIDI. Para ello, y tras el estudio de las distintas técnicas del cálculo del tono (pitch), se implementará una técnica con ciertas variaciones basada en la autocorrelación. También se profundiza en el segmentado de eventos, en particular, una técnica basada en el análisis de la derivada de la envolvente. El segundo, dedicado a la base rítmica de la canción, permite la creación de la percusión mediante el golpe rítmico de objetos que disponga el usuario, que serán asignados a los distintos elementos de percusión elegidos. Los resultados de la grabación de estos impactos serán señales de corta duración, no lineales y no armónicas, dificultando su discriminación. La herramienta elegida para la clasificación de los distintos patrones serán las redes neuronales artificiales (RNA). Se realizara un estudio de la metodología de diseño de redes neuronales especifico para este tipo de señales, evaluando la importancia de las variables de diseño como son el número de capas ocultas y neuronas en cada una de ellas, algoritmo de entrenamiento y funciones de activación. El estudio concluirá con la implementación de dos redes de diferente naturaleza. Una red de Elman, cuyas propiedades de memoria permiten la clasificación de patrones temporales, procesará las cualidades temporales analizando el ataque de su forma de onda. Una red de propagación hacia adelante feed-forward, que necesitará de robustas características espectrales y temporales para su clasificación. Se proponen 26 descriptores como los derivados de los momentos del espectro: centroide, curtosis y simetría, los coeficientes cepstrales de la escala de Mel (MFCCs), y algunos temporales como son la tasa de cruces por cero y el centroide de la envolvente temporal. Las capacidades de discriminación inter e intra clase de estas características serán evaluadas mediante un algoritmo de selección, habiéndose elegido RELIEF, un método basado en el algoritmo de los k vecinos mas próximos (KNN). Ambos controladores tendrán función de trabajar en tiempo real y offline, permitiendo tanto la composición de canciones, como su utilización como un instrumento más junto con mas músicos. ABSTRACT. The aim of this project is to make song composition easier by creating each MIDI track that builds it. Two controllers are implemented. In order to transcribe the melody, the first controler converts singing voice or humming into MIDI files. To do this a technique based on autocorrelation is implemented after having studied different pitch detection methods. Event segmentation has also been dealt with, to be more precise a technique based on the analysis of the signal's envelope and it's derivative have been used. The second one, can be used to make the song's rhythm . It allows the user, to create percussive patterns by hitting different objects of his environment. These recordings results in short duration, non-linear and non-harmonic signals. Which makes the classification process more complicated in the traditional way. The tools to used are the artificial neural networks (ANN). We will study the neural network design to deal with this kind of signals. The goal is to get a design methodology, paying attention to the variables involved, as the number of hidden layers and neurons in each, transfer functions and training algorithm. The study will end implementing two neural networks with different nature. Elman network, which has memory properties, is capable to recognize sequences of data and analyse the impact's waveform, precisely, the attack portion. A feed-forward network, needs strong spectral and temporal features extracted from the hit. Some descriptors are proposed as the derivates from the spectrum moment as centroid, kurtosis and skewness, the Mel-frequency cepstral coefficients, and some temporal features as the zero crossing rate (zcr) and the temporal envelope's centroid. Intra and inter class discrimination abilities of those descriptors will be weighted using the selection algorithm RELIEF, a Knn (K-nearest neighbor) based algorithm. Both MIDI controllers can be used to compose, or play with other musicians as it works on real-time and offline.
Resumo:
The data acquired by Remote Sensing systems allow obtaining thematic maps of the earth's surface, by means of the registered image classification. This implies the identification and categorization of all pixels into land cover classes. Traditionally, methods based on statistical parameters have been widely used, although they show some disadvantages. Nevertheless, some authors indicate that those methods based on artificial intelligence, may be a good alternative. Thus, fuzzy classifiers, which are based on Fuzzy Logic, include additional information in the classification process through based-rule systems. In this work, we propose the use of a genetic algorithm (GA) to select the optimal and minimum set of fuzzy rules to classify remotely sensed images. Input information of GA has been obtained through the training space determined by two uncorrelated spectral bands (2D scatter diagrams), which has been irregularly divided by five linguistic terms defined in each band. The proposed methodology has been applied to Landsat-TM images and it has showed that this set of rules provides a higher accuracy level in the classification process
Resumo:
Satellites and space equipment are exposed to diffuse acoustic fields during the launch process. The use of adequate techniques to model the response to the acoustic loads is a fundamental task during the design and verification phases. Considering the modal density of each element is necessary to identify the correct methodology. In this report selection criteria are presented in order to choose the correct modelling technique depending on the frequency ranges. A model satellite’s response to acoustic loads is presented, determining the modal densities of each component in different frequency ranges. The paper proposes to select the mathematical method in each modal density range and the differences in the response estimation due to the different used techniques. In addition, the methodologies to analyse the intermediate range of the system are discussed. The results are compared with experimental testing data obtained in an experimental modal test.
Resumo:
Overrecentdecades,remotesensinghasemergedasaneffectivetoolforimprov- ing agriculture productivity. In particular, many works have dealt with the problem of identifying characteristics or phenomena of crops and orchards on different scales using remote sensed images. Since the natural processes are scale dependent and most of them are hierarchically structured, the determination of optimal study scales is mandatory in understanding these processes and their interactions. The concept of multi-scale/multi- resolution inherent to OBIA methodologies allows the scale problem to be dealt with. But for that multi-scale and hierarchical segmentation algorithms are required. The question that remains unsolved is to determine the suitable scale segmentation that allows different objects and phenomena to be characterized in a single image. In this work, an adaptation of the Simple Linear Iterative Clustering (SLIC) algorithm to perform a multi-scale hierarchi- cal segmentation of satellite images is proposed. The selection of the optimal multi-scale segmentation for different regions of the image is carried out by evaluating the intra- variability and inter-heterogeneity of the regions obtained on each scale with respect to the parent-regions defined by the coarsest scale. To achieve this goal, an objective function, that combines weighted variance and the global Moran index, has been used. Two different kinds of experiment have been carried out, generating the number of regions on each scale through linear and dyadic approaches. This methodology has allowed, on the one hand, the detection of objects on different scales and, on the other hand, to represent them all in a sin- gle image. Altogether, the procedure provides the user with a better comprehension of the land cover, the objects on it and the phenomena occurring.
Resumo:
Animal tracking has been addressed by different initiatives over the last two decades. Most of them rely on satellite connectivity on every single node and lack of energy-saving strategies. This paper presents several new contributions on the tracking of dynamic heterogeneous asynchronous networks (primary nodes with GPS and secondary nodes with a kinetic generator) motivated by the animal tracking paradigm with random transmissions. A simple approach based on connectivity and coverage intersection is compared with more sophisticated algorithms based on ad-hoc implementations of distributed Kalman-based filters that integrate measurement information using Consensus principles in order to provide enhanced accuracy. Several simulations varying the coverage range, the random behavior of the kinetic generator (modeled as a Poisson Process) and the periodic activation of GPS are included. In addition, this study is enhanced with HW developments and implementations on commercial off-the-shelf equipment which show the feasibility for performing these proposals on real hardware.
Resumo:
Mass spectrometry (MS) data provide a promising strategy for biomarker discovery. For this purpose, the detection of relevant peakbins in MS data is currently under intense research. Data from mass spectrometry are challenging to analyze because of their high dimensionality and the generally low number of samples available. To tackle this problem, the scientific community is becoming increasingly interested in applying feature subset selection techniques based on specialized machine learning algorithms. In this paper, we present a performance comparison of some metaheuristics: best first (BF), genetic algorithm (GA), scatter search (SS) and variable neighborhood search (VNS). Up to now, all the algorithms, except for GA, have been first applied to detect relevant peakbins in MS data. All these metaheuristic searches are embedded in two different filter and wrapper schemes coupled with Naive Bayes and SVM classifiers.
Resumo:
This paper studies feature subset selection in classification using a multiobjective estimation of distribution algorithm. We consider six functions, namely area under ROC curve, sensitivity, specificity, precision, F1 measure and Brier score, for evaluation of feature subsets and as the objectives of the problem. One of the characteristics of these objective functions is the existence of noise in their values that should be appropriately handled during optimization. Our proposed algorithm consists of two major techniques which are specially designed for the feature subset selection problem. The first one is a solution ranking method based on interval values to handle the noise in the objectives of this problem. The second one is a model estimation method for learning a joint probabilistic model of objectives and variables which is used to generate new solutions and advance through the search space. To simplify model estimation, l1 regularized regression is used to select a subset of problem variables before model learning. The proposed algorithm is compared with a well-known ranking method for interval-valued objectives and a standard multiobjective genetic algorithm. Particularly, the effects of the two new techniques are experimentally investigated. The experimental results show that the proposed algorithm is able to obtain comparable or better performance on the tested datasets.
Resumo:
Este artículo propone un método para llevar a cabo la calibración de las familias de discontinuidades en macizos rocosos. We present a novel approach for calibration of stochastic discontinuity network parameters based on genetic algorithms (GAs). To validate the approach, examples of application of the method to cases with known parameters of the original Poisson discontinuity network are presented. Parameters of the model are encoded as chromosomes using a binary representation, and such chromosomes evolve as successive generations of a randomly generated initial population, subjected to GA operations of selection, crossover and mutation. Such back-calculated parameters are employed to make assessments about the inference capabilities of the model using different objective functions with different probabilities of crossover and mutation. Results show that the predictive capabilities of GAs significantly depend on the type of objective function considered; and they also show that the calibration capabilities of the genetic algorithm can be acceptable for practical engineering applications, since in most cases they can be expected to provide parameter estimates with relatively small errors for those parameters of the network (such as intensity and mean size of discontinuities) that have the strongest influence on many engineering applications.
Resumo:
Automatic blood glucose classification may help specialists to provide a better interpretation of blood glucose data, downloaded directly from patients glucose meter and will contribute in the development of decision support systems for gestational diabetes. This paper presents an automatic blood glucose classifier for gestational diabetes that compares 6 different feature selection methods for two machine learning algorithms: neural networks and decision trees. Three searching algorithms, Greedy, Best First and Genetic, were combined with two different evaluators, CSF and Wrapper, for the feature selection. The study has been made with 6080 blood glucose measurements from 25 patients. Decision trees with a feature set selected with the Wrapper evaluator and the Best first search algorithm obtained the best accuracy: 95.92%.
Resumo:
With the advent of cloud computing model, distributed caches have become the cornerstone for building scalable applications. Popular systems like Facebook [1] or Twitter use Memcached [5], a highly scalable distributed object cache, to speed up applications by avoiding database accesses. Distributed object caches assign objects to cache instances based on a hashing function, and objects are not moved from a cache instance to another unless more instances are added to the cache and objects are redistributed. This may lead to situations where some cache instances are overloaded when some of the objects they store are frequently accessed, while other cache instances are less frequently used. In this paper we propose a multi-resource load balancing algorithm for distributed cache systems. The algorithm aims at balancing both CPU and Memory resources among cache instances by redistributing stored data. Considering the possible conflict of balancing multiple resources at the same time, we give CPU and Memory resources weighted priorities based on the runtime load distributions. A scarcer resource is given a higher weight than a less scarce resource when load balancing. The system imbalance degree is evaluated based on monitoring information, and the utility load of a node, a unit for resource consumption. Besides, since continuous rebalance of the system may affect the QoS of applications utilizing the cache system, our data selection policy ensures that each data migration minimizes the system imbalance degree and hence, the total reconfiguration cost can be minimized. An extensive simulation is conducted to compare our policy with other policies. Our policy shows a significant improvement in time efficiency and decrease in reconfiguration cost.
Resumo:
The generator differential protection is one of the most important electrical protections of synchronous generator stator windings. Its operation principle is based on the comparison of the input current and output current at each phase winding. Unwanted trip commands are usually caused by CT saturation, wrong CT selection, or the fact that they may come from different manufacturers. In generators grounded through high impedance, only phase-to-phase or three-phase faults can be detected by the differential protection. This kind of fault causes differential current to flow in, at least, two phases of the winding. Several cases of unwanted trip commands caused by the appearance of differential current in only one phase of the generator have been reported. In this paper multi-phase criterion is proposed for generator differential protection algorithm when applied to high impedance grounded generators.
Resumo:
Con esta disertación se pretenden resolver algunos de los problemas encontrados actualmente en la recepción de señales de satélites bajo dos escenarios particularmente exigentes: comunicaciones de Espacio Profundo y en banda Ka. Las comunicaciones con sondas de Espacio Profundo necesitan grandes aperturas en tierra para poder incrementar la velocidad de datos. La opción de usar antennas con diámetro mayor de 35 metros tiene serios problemas, pues antenas tan grandes son caras de mantener, difíciles de apuntar, pueden tener largos tiempo de reparación y además tienen una efeciencia decreciente a medida que se utilizan bandas más altas. Soluciones basadas en agrupaciones de antenas de menor tamaño (12 ó 35 metros) son mas ecónomicas y factibles técnicamente. Las comunicaciones en banda Ka tambien pueden beneficiarse de la combinación de múltiples antennas. Las antenas de menor tamaño son más fáciles de apuntar y además tienen un campo de visión mayor. Además, las técnicas de diversidad espacial pueden ser reemplazadas por una combinación de antenas para así incrementar el margen del enlace. La combinación de antenas muy alejadas sobre grandes anchos de banda, bien por recibir una señal de banda ancha o múltiples de banda estrecha, es complicada técnicamente. En esta disertación se demostrará que el uso de conformador de haz en el dominio de la frecuencia puede ayudar a relajar los requisitos de calibración y, al mismo tiempo, proporcionar un mayor campo de visión y mayores capacidades de ecualización. Para llevar esto a cabo, el trabajo ha girado en torno a tres aspectos fundamentales. El primero es la investigación bibliográfica del trabajo existente en este campo. El segundo es el modelado matemático del proceso de combinación y el desarrollo de nuevos algoritmos de estimación de fase y retardo. Y el tercero es la propuesta de nuevas aplicaciones en las que usar estas técnicas. La investigación bibliográfica se centra principalmente en los capítulos 1, 2, 4 y 5. El capítulo 1 da una breve introducción a la teoría de combinación de antenas de gran apertura. En este capítulo, los principales campos de aplicación son descritos y además se establece la necesidad de compensar retardos en subbandas. La teoría de bancos de filtros se expone en el capítulo 2; se selecciona y simula un banco de filtros modulado uniformemente con fase lineal. Las propiedades de convergencia de varios filtros adaptativos se muestran en el capítulo 4. Y finalmente, las técnicas de estimación de retardo son estudiadas y resumidas en el capítulo 5. Desde el punto de vista matemático, las principales contribución de esta disertación han sido: • Sección 3.1.4. Cálculo de la desviación de haz de un conformador de haz con compensación de retardo en pasos discretos en frecuencia intermedia. • Sección 3.2. Modelo matemático de un conformador de haz en subbandas. • Sección 3.2.2. Cálculo de la desviación de haz de un conformador de haz en subbandas con un buffer de retardo grueso. • Sección 3.2.4. Análisis de la influencia de los alias internos en la compensación en subbandas de retardo y fase. • Sección 3.2.4.2. Cálculo de la desviación de haz de un conformador de haz con compensación de retardo en subbandas. • Sección 3.2.6. Cálculo de la ganancia de relación señal a ruido de la agrupación de antenas en cada una de las subbandas. • Sección 3.3.2. Modelado de la función de transferencia de la agrupación de antenas bajo errores de estimación de retardo. • Sección 3.3.3. Modelado de los efectos de derivas de fase y retardo entre actualizaciones de las estimaciones. • Sección 3.4. Cálculo de la directividad de la agrupación de antenas con y sin compensación de retardos en subbandas. • Sección 5.2.6. Desarrollo de un algorimo para estimar la fase y el retardo entre dos señales a partir de su descomposición de subbandas bajo entornos estacionarios. • Sección 5.5.1. Desarrollo de un algorimo para estimar la fase, el retardo y la deriva de retardo entre dos señales a partir de su descomposición de subbandas bajo entornos no estacionarios. Las aplicaciones que se pueden beneficiar de estas técnicas son descritas en el capítulo 7: • Sección 6.2. Agrupaciones de antenas para comunicaciones de Espacio Profundo con capacidad multihaz y sin requisitos de calibración geométrica o de retardo de grupo. • Sección 6.2.6. Combinación en banda ancha de antenas con separaciones de miles de kilómetros, para recepción de sondas de espacio profundo. • Secciones 6.4 and 6.3. Combinación de estaciones remotas en banda Ka en escenarios de diversidad espacial, para recepción de satélites LEO o GEO. • Sección 6.3. Recepción de satélites GEO colocados con arrays de antenas multihaz. Las publicaciones a las que ha dado lugar esta tesis son las siguientes • A. Torre. Wideband antenna arraying over long distances. Interplanetary Progress Report, 42-194:1–18, 2013. En esta pulicación se resumen los resultados de las secciones 3.2, 3.2.2, 3.3.2, los algoritmos en las secciones 5.2.6, 5.5.1 y la aplicación destacada en 6.2.6. • A. Torre. Reception of wideband signals from geostationary collocated satellites with antenna arrays. IET Communications, Vol. 8, Issue 13:2229–2237, September, 2014. En esta segunda se muestran los resultados de la sección 3.2.4, el algoritmo en la sección 5.2.6.1 , y la aplicación mostrada en 6.3. ABSTRACT This dissertation is an attempt to solve some of the problems found nowadays in the reception of satellite signals under two particular challenging scenarios: Deep Space and Ka-band communications. Deep Space communications require from larger apertures on ground in order to increase the data rate. The option of using single dishes with diameters larger than 35 meters has severe drawbacks. Such antennas are expensive to maintain, prone to long downtimes, difficult to point and have a degraded performance in high frequency bands. The array solution, either with 12 meter or 35 meter antennas is deemed to be the most economically and technically feasible solution. Ka-band communications can also benefit from antenna arraying technology. The smaller aperture antennas that make up the array are easier to point and have a wider field of view allowing multiple simultaneous beams. Besides, site diversity techniques can be replaced by pure combination in order to increase link margin. Combination of far away antennas over a large bandwidth, either because a wideband signal or multiple narrowband signals are received, is a demanding task. This dissertation will show that the use of frequency domain beamformers with subband delay compensation can help to ease calibration requirements and, at the same time, provide with a wider field of view and enhanced equalization capabilities. In order to do so, the work has been focused on three main aspects. The first one is the bibliographic research of previous work on this subject. The second one is the mathematical modeling of the array combination process and the development of new phase/delay estimation algorithms. And the third one is the proposal of new applications in which these techniques can be used. Bibliographic research is mainly done in chapters 1, 2, 4 and 5. Chapter 1 gives a brief introduction to previous work in the field of large aperture antenna arraying. In this chapter, the main fields of application are described and the need for subband delay compensation is established. Filter bank theory is shown in chapter 2; a linear phase uniform modulated filter bank is selected and simulated under diverse conditions. The convergence properties of several adaptive filters are shown in chapter 4. Finally, delay estimation techniques are studied and summarized in chapter 5. From a mathematical point of view, the main contributions of this dissertation have been: • Section 3.1.4. Calculation of beam squint of an IF beamformer with delay compensation at discrete time steps. • Section 3.2. Establishment of a mathematical model of a subband beamformer. • Section 3.2.2. Calculation of beam squint in a subband beamformer with a coarse delay buffer. • Section 3.2.4. Analysis of the influence of internal aliasing on phase and delay subband compensation. • Section 3.2.4.2. Calculation of beam squint of a beamformer with subband delay compensation. • Section 3.2.6. Calculation of the array SNR gain at each of the subbands. • Section 3.3.2. Modeling of the transfer function of an array subject to delay estimation errors. • Section 3.3.3. Modeling of the effects of phase and delay drifts between estimation updates. • Section 3.4. Calculation of array directivity with and without subband delay compensation. • Section 5.2.6. Development of an algorithm to estimate relative delay and phase between two signals from their subband decomposition in stationary environments. • Section 5.5.1. Development of an algorithm to estimate relative delay rate, delay and phase between two signals from their subband decomposition in non stationary environments. The applications that can benefit from these techniques are described in chapter 7: • Section 6.2. Arrays of antennas for Deep Space communications with multibeam capacity and without geometric or group delay calibration requirement. • Section 6.2.6. Wideband antenna arraying over long distances, in the range of thousands of kilometers, for reception of Deep Space probes. • Sections 6.4 y 6.3. Combination of remote stations in Ka-band site diversity scenarios for reception of LEO or GEO satellites. • Section 6.3. Reception of GEO collocated satellites with multibeam antenna arrays. The publications that have been made from the work in this dissertation are • A. Torre. Wideband antenna arraying over long distances. Interplanetary Progress Report, 42-194:1–18, 2013. This article shows the results in sections 3.2, 3.2.2, 3.3.2, the algorithms in sections 5.2.6, 5.5.1 and the application in section 6.2.6. • A. Torre. Reception of wideband signals from geostationary collocated satellites with antenna arrays. IET Communications, Vol. 8, Issue 13:2229–2237, September, 2014. This second article shows among others the results in section 3.2.4, the algorithm in section 5.2.6.1 , and the application in section 6.3.
Resumo:
In the last decade, Object Based Image Analysis (OBIA) has been accepted as an effective method for processing high spatial resolution multiband images. This image analysis method is an approach that starts with the segmentation of the image. Image segmentation in general is a procedure to partition an image into homogenous groups (segments). In practice, visual interpretation is often used to assess the quality of segmentation and the analysis relies on the experience of an analyst. In an effort to address the issue, in this study, we evaluate several seed selection strategies for an automatic image segmentation methodology based on a seeded region growing-merging approach. In order to evaluate the segmentation quality, segments were subjected to spatial autocorrelation analysis using Moran's I index and intra-segment variance analysis. We apply the algorithm to image segmentation using an aerial multiband image.
Resumo:
The new generation of artificial satellites is providing a huge amount of Earth observation images whose exploitation can report invaluable benefits, both economical and environmental. However, only a small fraction of this data volume has been analyzed, mainly due to the large human resources needed for that task. In this sense, the development of unsupervised methodologies for the analysis of these images is a priority. In this work, a new unsupervised segmentation algorithm for satellite images is proposed. This algorithm is based on the rough-set theory, and it is inspired by a previous segmentation algorithm defined in the RGB color domain. The main contributions of the new algorithm are: (i) extending the original algorithm to four spectral bands; (ii) the concept of the superpixel is used in order to define the neighborhood similarity of a pixel adapted to the local characteristics of each image; (iii) and two new region merged strategies are proposed and evaluated in order to establish the final number of regions in the segmented image. The experimental results show that the proposed approach improves the results provided by the original method when both are applied to satellite images with different spectral and spatial resolutions.