6 resultados para Rutherford
em Universidad Politécnica de Madrid
Resumo:
The lattice order degree and the strain in as-grown, Mn-implanted and post-implantedannealedInAsthinfilms were investigated with depth resolution by means of Rutherford backscattering spectrometry in channeling conditions (RBS/C). Three main crystallographic axes were analyzed for both In and As sublattices. The behaviour of the induced defects was evaluated in two regions with different native defects: the interface and the surface. The results show that Mn implantation and post-implantation annealing are anisotropic processes, affecting in a different way the In and As sublattices. The mechanisms influencing the enhancement and deterioration of the crystal quality during the implantation are discussed in relation to the as-grown defects and the segregation of the elements
Resumo:
High quality 1 μm thick a-plane MgxZn1−xO layers were produced by molecular beam epitaxy with Mg contents higher than 50%. Resonant Rutherford backscattering spectrometry combined with ion channeling revealed a uniform growth in both composition and atomic order. The lattice-site location of Mg, Zn and O elements was determined independently, proving the substitutional behaviour of Mg in Zn-sites of the wurtzite lattice. X-Ray diffraction pole figure analysis also confirms the absence of phase separation. Optical properties at such high Mg contents were studied in Schottky photodiodes.
Resumo:
We have analyzed by means of Rutherford backscattering spectrometry (RBS) the Ti lattice location and the degree of crystalline lattice recovery in heavily Ti implanted silicon layers subsequently pulsed laser melted (PLM). Theoretical studies have predicted that Ti should occupy interstitial sites in silicon for a metallic-intermediate band (IB) formation. The analysis of Ti lattice location after PLM processes is a crucial point to evaluate the IB formation that can be clarifyied by means of RBS measurements. After PLM, time-of-flight secondary ion mass spectrometry measurements show that the Ti concentration in the layers is well above the theoretical limit for IB formation. RBS measurements have shown a significant improvement of the lattice quality at the highest PLM energy density studied. The RBS channeling spectra reveals clearly that after PLM processes Ti impurities are mostly occupying interstitial lattice sites.
Resumo:
In this work we present the assessment of the structural and piezoelectric properties of Al(0.5-x)TixN0.5 compounds (titanium content menor que6% atomic), which are expected to possess improved properties than conventional AlN films, such as larger piezoelectric activity, thermal stability of frequency and temperature resistance. Al:Ti:N films were deposited from a twin concentric target of Al and Ti by reactive AC sputtering, which provided films with a radial gradient of the Ti concentration. The properties of the films were investigated as a function of their composition, which was measured by electron dispersive energy dispersive X-ray spectroscopy and Rutherford backscattering spectrometry. The microstructure and morphology of the films were assessed by X-ray diffraction and infrared reflectance. Their electroacoustic properties and dielectric constant were derived from the frequency response of BAW test resonators. Al:Ti:N films properties appear to be strongly dependent on the Ti content, which modifies the AlN wurtzite crystal structure leading to greater dielectric constant, lower sound velocities, lower electromechanical factor and moderately improved temperature coefficient of the resonant frequency.
Resumo:
Natural disasters affect hundreds of millions of people worldwide every year. Emergency response efforts depend upon the availability of timely information, such as information concerning the movements of affected populations. The analysis of aggregated and anonymized Call Detail Records (CDR) captured from the mobile phone infrastructure provides new possibilities to characterize human behavior during critical events. In this work, we investigate the viability of using CDR data combined with other sources of information to characterize the floods that occurred in Tabasco, Mexico in 2009. An impact map has been reconstructed using Landsat-7 images to identify the floods. Within this frame, the underlying communication activity signals in the CDR data have been analyzed and compared against rainfall levels extracted from data of the NASA-TRMM project. The variations in the number of active phones connected to each cell tower reveal abnormal activity patterns in the most affected locations during and after the floods that could be used as signatures of the floods - both in terms of infrastructure impact assessment and population information awareness. The epresentativeness of the analysis has been assessed using census data and civil protection records. While a more extensive validation is required, these early results suggest high potential in using cell tower activity information to improve early warning and emergency management mechanisms.
Resumo:
Natural disasters affect hundreds of millions of people worldwide every year. Emergency response efforts depend upon the availability of timely information, such as information concerning the movements of affected populations. The analysis of aggregated and anonymized Call Detail Records (CDR) captured from the mobile phone infrastructure provides new possibilities to characterize human behavior during critical events. In this work, we investigate the viability of using CDR data combined with other sources of information to characterize the floods that occurred in Tabasco, Mexico in 2009. An impact map has been reconstructed using Landsat-7 images to identify the floods. Within this frame, the underlying communication activity signals in the CDR data have been analyzed and compared against rainfall levels extracted from data of the NASA-TRMM project. The variations in the number of active phones connected to each cell tower reveal abnormal activity patterns in the most affected locations during and after the floods that could be used as signatures of the floods - both in terms of infrastructure impact assessment and population information awareness. The representativeness of the analysis has been assessed using census data and civil protection records. While a more extensive validation is required, these early results suggest high potential in using cell tower activity information to improve early warning and emergency management mechanisms.