6 resultados para Reserve Selection Procedures
em Universidad Politécnica de Madrid
Resumo:
En los últimos años la externalización de TI ha ganado mucha importancia en el mercado y, por ejemplo, el mercado externalización de servicios de TI sigue creciendo cada año. Ahora más que nunca, las organizaciones son cada vez más los compradores de las capacidades necesarias mediante la obtención de productos y servicios de los proveedores, desarrollando cada vez menos estas capacidades dentro de la empresa. La selección de proveedores de TI es un problema de decisión complejo. Los gerentes que enfrentan una decisión sobre la selección de proveedores de TI tienen dificultades en la elaboración de lo que hay que pensar, además en sus discursos. También de acuerdo con un estudio del SEI (Software Engineering Institute) [40], del 20 al 25 por ciento de los grandes proyectos de adquisición de TI fracasan en dos años y el 50 por ciento fracasan dentro de cinco años. La mala gestión, la mala definición de requisitos, la falta de evaluaciones exhaustivas, que pueden ser utilizadas para llegar a los mejores candidatos para la contratación externa, la selección de proveedores y los procesos de contratación inadecuados, la insuficiencia de procedimientos de selección tecnológicos, y los cambios de requisitos no controlados son factores que contribuyen al fracaso del proyecto. La mayoría de los fracasos podrían evitarse si el cliente aprendiese a comprender los problemas de decisión, hacer un mejor análisis de decisiones, y el buen juicio. El objetivo principal de este trabajo es el desarrollo de un modelo de decisión para la selección de proveedores de TI que tratará de reducir la cantidad de fracasos observados en las relaciones entre el cliente y el proveedor. La mayor parte de estos fracasos son causados por una mala selección, por parte del cliente, del proveedor. Además de estos problemas mostrados anteriormente, la motivación para crear este trabajo es la inexistencia de cualquier modelo de decisión basado en un multi modelo (mezcla de modelos adquisición y métodos de decisión) para el problema de la selección de proveedores de TI. En el caso de estudio, nueve empresas españolas fueron analizadas de acuerdo con el modelo de decisión para la selección de proveedores de TI desarrollado en este trabajo. Dos softwares se utilizaron en este estudio de caso: Expert Choice, y D-Sight. ABSTRACT In the past few years IT outsourcing has gained a lot of importance in the market and, for example, the IT services outsourcing market is still growing every year. Now more than ever, organizations are increasingly becoming acquirers of needed capabilities by obtaining products and services from suppliers and developing less and less of these capabilities in-house. IT supplier selection is a complex and opaque decision problem. Managers facing a decision about IT supplier selection have difficulty in framing what needs to be thought about further in their discourses. Also according to a study from SEI (Software Engineering Institute) [40], 20 to 25 percent of large information technology (IT) acquisition projects fail within two years and 50 percent fail within five years. Mismanagement, poor requirements definition, lack of comprehensive evaluations, which can be used to come up with the best candidates for outsourcing, inadequate supplier selection and contracting processes, insufficient technology selection procedures, and uncontrolled requirements changes are factors that contribute to project failure. The majority of project failures could be avoided if the acquirer learns how to understand the decision problems, make better decision analysis, and good judgment. The main objective of this work is the development of a decision model for IT supplier selection that will try to decrease the amount of failures seen in the relationships between the client-supplier. Most of these failures are caused by a not well selection of the supplier. Besides these problems showed above, the motivation to create this work is the inexistence of any decision model based on multi model (mixture of acquisition models and decision methods) for the problem of IT supplier selection. In the case study, nine different Spanish companies were analyzed based on the IT supplier selection decision model developed in this work. Two software products were used in this case study, Expert Choice and D-Sight.
Resumo:
Los accidentes del tráfico son un fenómeno social muy relevantes y una de las principales causas de mortalidad en los países desarrollados. Para entender este fenómeno complejo se aplican modelos econométricos sofisticados tanto en la literatura académica como por las administraciones públicas. Esta tesis está dedicada al análisis de modelos macroscópicos para los accidentes del tráfico en España. El objetivo de esta tesis se puede dividir en dos bloques: a. Obtener una mejor comprensión del fenómeno de accidentes de trafico mediante la aplicación y comparación de dos modelos macroscópicos utilizados frecuentemente en este área: DRAG y UCM, con la aplicación a los accidentes con implicación de furgonetas en España durante el período 2000-2009. Los análisis se llevaron a cabo con enfoque frecuencista y mediante los programas TRIO, SAS y TRAMO/SEATS. b. La aplicación de modelos y la selección de las variables más relevantes, son temas actuales de investigación y en esta tesis se ha desarrollado y aplicado una metodología que pretende mejorar, mediante herramientas teóricas y prácticas, el entendimiento de selección y comparación de los modelos macroscópicos. Se han desarrollado metodologías tanto para selección como para comparación de modelos. La metodología de selección de modelos se ha aplicado a los accidentes mortales ocurridos en la red viaria en el período 2000-2011, y la propuesta metodológica de comparación de modelos macroscópicos se ha aplicado a la frecuencia y la severidad de los accidentes con implicación de furgonetas en el período 2000-2009. Como resultado de los desarrollos anteriores se resaltan las siguientes contribuciones: a. Profundización de los modelos a través de interpretación de las variables respuesta y poder de predicción de los modelos. El conocimiento sobre el comportamiento de los accidentes con implicación de furgonetas se ha ampliado en este proceso. bl. Desarrollo de una metodología para selección de variables relevantes para la explicación de la ocurrencia de accidentes de tráfico. Teniendo en cuenta los resultados de a) la propuesta metodológica se basa en los modelos DRAG, cuyos parámetros se han estimado con enfoque bayesiano y se han aplicado a los datos de accidentes mortales entre los años 2000-2011 en España. Esta metodología novedosa y original se ha comparado con modelos de regresión dinámica (DR), que son los modelos más comunes para el trabajo con procesos estocásticos. Los resultados son comparables, y con la nueva propuesta se realiza una aportación metodológica que optimiza el proceso de selección de modelos, con escaso coste computacional. b2. En la tesis se ha diseñado una metodología de comparación teórica entre los modelos competidores mediante la aplicación conjunta de simulación Monte Cario, diseño de experimentos y análisis de la varianza ANOVA. Los modelos competidores tienen diferentes estructuras, que afectan a la estimación de efectos de las variables explicativas. Teniendo en cuenta el estudio desarrollado en bl) este desarrollo tiene el propósito de determinar como interpretar la componente de tendencia estocástica que un modelo UCM modela explícitamente, a través de un modelo DRAG, que no tiene un método específico para modelar este elemento. Los resultados de este estudio son importantes para ver si la serie necesita ser diferenciada antes de modelar. b3. Se han desarrollado nuevos algoritmos para realizar los ejercicios metodológicos, implementados en diferentes programas como R, WinBUGS, y MATLAB. El cumplimiento de los objetivos de la tesis a través de los desarrollos antes enunciados se remarcan en las siguientes conclusiones: 1. El fenómeno de accidentes del tráfico se ha analizado mediante dos modelos macroscópicos. Los efectos de los factores de influencia son diferentes dependiendo de la metodología aplicada. Los resultados de predicción son similares aunque con ligera superioridad de la metodología DRAG. 2. La metodología para selección de variables y modelos proporciona resultados prácticos en cuanto a la explicación de los accidentes de tráfico. La predicción y la interpretación también se han mejorado mediante esta nueva metodología. 3. Se ha implementado una metodología para profundizar en el conocimiento de la relación entre las estimaciones de los efectos de dos modelos competidores como DRAG y UCM. Un aspecto muy importante en este tema es la interpretación de la tendencia mediante dos modelos diferentes de la que se ha obtenido información muy útil para los investigadores en el campo del modelado. Los resultados han proporcionado una ampliación satisfactoria del conocimiento en torno al proceso de modelado y comprensión de los accidentes con implicación de furgonetas y accidentes mortales totales en España. ABSTRACT Road accidents are a very relevant social phenomenon and one of the main causes of death in industrialized countries. Sophisticated econometric models are applied in academic work and by the administrations for a better understanding of this very complex phenomenon. This thesis is thus devoted to the analysis of macro models for road accidents with application to the Spanish case. The objectives of the thesis may be divided in two blocks: a. To achieve a better understanding of the road accident phenomenon by means of the application and comparison of two of the most frequently used macro modelings: DRAG (demand for road use, accidents and their gravity) and UCM (unobserved components model); the application was made to van involved accident data in Spain in the period 2000-2009. The analysis has been carried out within the frequentist framework and using available state of the art software, TRIO, SAS and TRAMO/SEATS. b. Concern on the application of the models and on the relevant input variables to be included in the model has driven the research to try to improve, by theoretical and practical means, the understanding on methodological choice and model selection procedures. The theoretical developments have been applied to fatal accidents during the period 2000-2011 and van-involved road accidents in 2000-2009. This has resulted in the following contributions: a. Insight on the models has been gained through interpretation of the effect of the input variables on the response and prediction accuracy of both models. The behavior of van-involved road accidents has been explained during this process. b1. Development of an input variable selection procedure, which is crucial for an efficient choice of the inputs. Following the results of a) the procedure uses the DRAG-like model. The estimation is carried out within the Bayesian framework. The procedure has been applied for the total road accident data in Spain in the period 2000-2011. The results of the model selection procedure are compared and validated through a dynamic regression model given that the original data has a stochastic trend. b2. A methodology for theoretical comparison between the two models through Monte Carlo simulation, computer experiment design and ANOVA. The models have a different structure and this affects the estimation of the effects of the input variables. The comparison is thus carried out in terms of the effect of the input variables on the response, which is in general different, and should be related. Considering the results of the study carried out in b1) this study tries to find out how a stochastic time trend will be captured in DRAG model, since there is no specific trend component in DRAG. Given the results of b1) the findings of this study are crucial in order to see if the estimation of data with stochastic component through DRAG will be valid or whether the data need a certain adjustment (typically differencing) prior to the estimation. The model comparison methodology was applied to the UCM and DRAG models, considering that, as mentioned above, the UCM has a specific trend term while DRAG does not. b3. New algorithms were developed for carrying out the methodological exercises. For this purpose different softwares, R, WinBUGs and MATLAB were used. These objectives and contributions have been resulted in the following findings: 1. The road accident phenomenon has been analyzed by means of two macro models: The effects of the influential input variables may be estimated through the models, but it has been observed that the estimates vary from one model to the other, although prediction accuracy is similar, with a slight superiority of the DRAG methodology. 2. The variable selection methodology provides very practical results, as far as the explanation of road accidents is concerned. Prediction accuracy and interpretability have been improved by means of a more efficient input variable and model selection procedure. 3. Insight has been gained on the relationship between the estimates of the effects using the two models. A very relevant issue here is the role of trend in both models, relevant recommendations for the analyst have resulted from here. The results have provided a very satisfactory insight into both modeling aspects and the understanding of both van-involved and total fatal accidents behavior in Spain.
Resumo:
The consumption of melon (Cucumis melo L.) has been, until several years ago, regional, seasonal and without commercial interest. Recent commercial changes and world wide transportation have changed this situation. Melons from 3 different ripeness stages at harvest and 7 cold storage periods have been analysed by destructive and non destructive tests. Chemical, physical, mechanical (non destructive impact, compression, skin puncture and Magness- Taylor) and sensory tests were carried out in order to select the best test to assess quality and to determine the optimal ripeness stage at harvest. Analysis of variance and Principal Component Analysis were performed to study the data. The mechanical properties based on non-destructive Impact and Compression can be used to monitor cold storage evolution. They can also be used at harvest to segregate the highest ripeness stage (41 days after anthesis DAA) in relation to less ripe stages (34 and 28 DAA).Only 34 and 41 DAA reach a sensory evaluation above 50 in a scale from 0-100.
Resumo:
—Microarray-based global gene expression profiling, with the use of sophisticated statistical algorithms is providing new insights into the pathogenesis of autoimmune diseases. We have applied a novel statistical technique for gene selection based on machine learning approaches to analyze microarray expression data gathered from patients with systemic lupus erythematosus (SLE) and primary antiphospholipid syndrome (PAPS), two autoimmune diseases of unknown genetic origin that share many common features. The methodology included a combination of three data discretization policies, a consensus gene selection method, and a multivariate correlation measurement. A set of 150 genes was found to discriminate SLE and PAPS patients from healthy individuals. Statistical validations demonstrate the relevance of this gene set from an univariate and multivariate perspective. Moreover, functional characterization of these genes identified an interferon-regulated gene signature, consistent with previous reports. It also revealed the existence of other regulatory pathways, including those regulated by PTEN, TNF, and BCL-2, which are altered in SLE and PAPS. Remarkably, a significant number of these genes carry E2F binding motifs in their promoters, projecting a role for E2F in the regulation of autoimmunity.
Resumo:
Geologic storage of carbon dioxide (CO2) has been proposed as a viable means for reducing anthropogenic CO2 emissions. Once injection begins, a program for measurement, monitoring, and verification (MMV) of CO2 distribution is required in order to: a) research key features, effects and processes needed for risk assessment; b) manage the injection process; c) delineate and identify leakage risk and surface escape; d) provide early warnings of failure near the reservoir; and f) verify storage for accounting and crediting. The selection of the methodology of monitoring (characterization of site and control and verification in the post-injection phase) is influenced by economic and technological variables. Multiple Criteria Decision Making (MCDM) refers to a methodology developed for making decisions in the presence of multiple criteria. MCDM as a discipline has only a relatively short history of 40 years, and it has been closely related to advancements on computer technology. Evaluation methods and multicriteria decisions include the selection of a set of feasible alternatives, the simultaneous optimization of several objective functions, and a decision-making process and evaluation procedures that must be rational and consistent. The application of a mathematical model of decision-making will help to find the best solution, establishing the mechanisms to facilitate the management of information generated by number of disciplines of knowledge. Those problems in which decision alternatives are finite are called Discrete Multicriteria Decision problems. Such problems are most common in reality and this case scenario will be applied in solving the problem of site selection for storing CO2. Discrete MCDM is used to assess and decide on issues that by nature or design support a finite number of alternative solutions. Recently, Multicriteria Decision Analysis has been applied to hierarchy policy incentives for CCS, to assess the role of CCS, and to select potential areas which could be suitable to store. For those reasons, MCDM have been considered in the monitoring phase of CO2 storage, in order to select suitable technologies which could be techno-economical viable. In this paper, we identify techniques of gas measurements in subsurface which are currently applying in the phase of characterization (pre-injection); MCDM will help decision-makers to hierarchy the most suitable technique which fit the purpose to monitor the specific physic-chemical parameter.
Resumo:
Road accidents are a very relevant issue in many countries and macroeconomic models are very frequently applied by academia and administrations to reduce their frequency and consequences. The selection of explanatory variables and response transformation parameter within the Bayesian framework for the selection of the set of explanatory variables a TIM and 3IM (two input and three input models) procedures are proposed. The procedure also uses the DIC and pseudo -R2 goodness of fit criteria. The model to which the methodology is applied is a dynamic regression model with Box-Cox transformation (BCT) for the explanatory variables and autorgressive (AR) structure for the response. The initial set of 22 explanatory variables are identified. The effects of these factors on the fatal accident frequency in Spain, during 2000-2012, are estimated. The dependent variable is constructed considering the stochastic trend component.