13 resultados para Propagation structure

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The separation of the lower stage of the ARIANE 5 Vehicle Equipment Bay (VEB) Structure is to be done using a pyrotechnic device. The wave propagation effects produced by the explosion can affect the electronic equipment, so it was decided to analyze, using both physical and numerical modeling, a small piece of the structure to determine the distribution of the accelerations and the relative importance of damping, stiffness, connections, etc. on the response of the equipment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents some of the modelling criteria that have been used for the study of pyrotechnic shock propagation in the A5 VEB Structure, as well as the main conclusions from a mathematical model of the axymmetric effects in it. The separation of the lower stage of the ARIANE 5 Vehicle Equipment Bay (VEB)Structure is to be done using a pyrotechnic device. The wave propagation effects produced by the explosion have been analyzed with a computer program using as shape functions the analytical solution to the frequency response of a Timoshenko-Rayleigh beams and shells in that way the discretization can have elements as large as possible, depending on the material properties and boundary conditions. Moreover an enormous amount of possibilities in the treatment of concentrated masses, springs and dashpots, either with respect to a fixed reference or between nodes, is open for translational as well as rotational degrees of freedom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a new countermeasure against power and electromagnetic (EM) Side Channel Attacks (SCA) on FPGA implemented cryptographic algorithms is proposed. This structure mainly focuses on a critical vulnerability, Early Evaluation, also known as Early Propagation Effect (EPE), which exists in most conventional SCA-hardened DPL (Dual-rail with Precharge Logic) solutions. The main merit of this proposal is that the EPE can be effectively prevented by using a synchronized non regular precharge network, which maintains identical routing between the original and mirror parts, where costs and design complexity compared with previous EPE-resistant countermeasures are reduced, while security level is not sacrificed. Another advantage for our Precharge Absorbed(PA) - DPL method is that its Dual-Core style (independent architecture for true and false parts) could be generated using partial reconfiguration. This helps to get a dynamic security protection with better energy planning. That means system only keeps the true part which fulfills the normal en/decryption task in low security level, and reconfigures the false parts once high security level is required. A relatively limited clock speed is a compromise, since signal propagation is restricted to a portion of the clock period. In this paper, we explain the principles of PA-DPL and provide the guidelines to design this structure. We experimentally validate our methods in a minimized AES co-processor on Xilinx Virtex-5 board using electromagnetic (EM) attacks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Corrosion of reinforcing steel in concrete due to chloride ingress is one of the main causes of the deterioration of reinforced concrete structures. Structures most affected by such a corrosion are marine zone buildings and structures exposed to de-icing salts like highways and bridges. Such process is accompanied by an increase in volume of the corrosión products on the rebarsconcrete interface. Depending on the level of oxidation, iron can expand as much as six times its original volume. This increase in volume exerts tensile stresses in the surrounding concrete which result in cracking and spalling of the concrete cover if the concrete tensile strength is exceeded. The mechanism by which steel embedded in concrete corrodes in presence of chloride is the local breakdown of the passive layer formed in the highly alkaline condition of the concrete. It is assumed that corrosion initiates when a critical chloride content reaches the rebar surface. The mathematical formulation idealized the corrosion sequence as a two-stage process: an initiation stage, during which chloride ions penetrate to the reinforcing steel surface and depassivate it, and a propagation stage, in which active corrosion takes place until cracking of the concrete cover has occurred. The aim of this research is to develop computer tools to evaluate the duration of the service life of reinforced concrete structures, considering both the initiation and propagation periods. Such tools must offer a friendly interface to facilitate its use by the researchers even though their background is not in numerical simulation. For the evaluation of the initiation period different tools have been developed: Program TavProbabilidade: provides means to carry out a probability analysis of a chloride ingress model. Such a tool is necessary due to the lack of data and general uncertainties associated with the phenomenon of the chloride diffusion. It differs from the deterministic approach because it computes not just a chloride profile at a certain age, but a range of chloride profiles for each probability or occurrence. Program TavProbabilidade_Fiabilidade: carries out reliability analyses of the initiation period. It takes into account the critical value of the chloride concentration on the steel that causes breakdown of the passive layer and the beginning of the propagation stage. It differs from the deterministic analysis in that it does not predict if the corrosion is going to begin or not, but to quantifies the probability of corrosion initiation. Program TavDif_1D: was created to do a one dimension deterministic analysis of the chloride diffusion process by the finite element method (FEM) which numerically solves Fick’second Law. Despite of the different FEM solver already developed in one dimension, the decision to create a new code (TavDif_1D) was taken because of the need to have a solver with friendly interface for pre- and post-process according to the need of IETCC. An innovative tool was also developed with a systematic method devised to compare the ability of the different 1D models to predict the actual evolution of chloride ingress based on experimental measurements, and also to quantify the degree of agreement of the models with each others. For the evaluation of the entire service life of the structure: a computer program has been developed using finite elements method to do the coupling of both service life periods: initiation and propagation. The program for 2D (TavDif_2D) allows the complementary use of two external programs in a unique friendly interface: • GMSH - an finite element mesh generator and post-processing viewer • OOFEM – a finite element solver. This program (TavDif_2D) is responsible to decide in each time step when and where to start applying the boundary conditions of fracture mechanics module in function of the amount of chloride concentration and corrosion parameters (Icorr, etc). This program is also responsible to verify the presence and the degree of fracture in each element to send the Information of diffusion coefficient variation with the crack width. • GMSH - an finite element mesh generator and post-processing viewer • OOFEM – a finite element solver. The advantages of the FEM with the interface provided by the tool are: • the flexibility to input the data such as material property and boundary conditions as time dependent function. • the flexibility to predict the chloride concentration profile for different geometries. • the possibility to couple chloride diffusion (initiation stage) with chemical and mechanical behavior (propagation stage). The OOFEM code had to be modified to accept temperature, humidity and the time dependent values for the material properties, which is necessary to adequately describe the environmental variations. A 3-D simulation has been performed to simulate the behavior of the beam on both, action of the external load and the internal load caused by the corrosion products, using elements of imbedded fracture in order to plot the curve of the deflection of the central region of the beam versus the external load to compare with the experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of atmospheric gases and tropospheric phenomena becomes more relevant at frequencies within the THz band (100 GHz to 10 THz), severely affecting the propagation conditions. The use of radiosoundings in propagation studies is a well established measurement technique in order to collect information about the vertical structure of the atmosphere, from which gaseous and cloud attenuation can be estimated with the use of propagation models. However, some of these prediction models are not suitable to be used under rainy conditions. In the present study, a method to identify the presence of rainy conditions during radiosoundings is introduced, with the aim of filtering out these events from yearly statistics of predicted atmospheric attenuation. The detection procedure is based on the analysis of a set of parameters, some of them extracted from synoptical observations of weather (SYNOP reports) and other derived from radiosonde observations (RAOBs). The performance of the method has been evaluated under different climatic conditions, corresponding to three locations in Spain, where colocated rain gauge data were available. Rain events detected by the method have been compared with those precipitations identified by the rain gauge. The pertinence Received 26 June 2012, Accepted 31 July 2012, Scheduled 15 August 2012 * Corresponding author: Gustavo Adolfo Siles Soria (gsiles@grc.ssr.upm.es). 258 Siles et al. of the method is discussed on the basis of an analysis of cumulative distributions of total attenuation at 100 and 300 GHz. This study demonstrates that the proposed method can be useful to identify events probably associated to rainy conditions. Hence, it can be considered as a suitable algorithm in order to filter out this kind of events from annual attenuation statistics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Protocols have been established to clone adult cork oak trees by somatic embryogenesis using semisolid medium. However, for economically viable mass propagation, embryogenic cultures in liquid medium need to be developed. In this study, suspension cultures were initiated from embryo clusters obtained by secondary embryogenesis on a gelled medium lacking plant growth regulators. After 6 days of culture, these embryo clusters generated high cell density suspensions that also contained small organized structures (embryos and embryogenic clumps). As the culture duration increased, tissue necrosis and fewer embryogenic structures were observed and the establishment of suspension cultures failed. An alternative method was found adequate for initiation of embryogenic suspensions: embryo clusters from gelled medium were briefly shaken in liquid medium and detached cells and embryogenic masses of 41?800 lm were used as inoculum. Maintenance of embryogenic suspensions was achieved using a low-density inoculum (43 mg l-1) by subculturing four embryogenic clumps of 0.8?1.2 mm per 70 ml of medium. Proliferation ability was maintained for almost 1 year through ten consecutive subcultures. The initiation and maintenance protocols first developed for a single genotype were effective when tested on 11 cork oak genotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early propagation effect (EPE) is a critical problem in conventional dual-rail logic implementations against Side Channel Attacks (SCAs). Among previous EPE-resistant architectures, PA-DPL logic offers EPE-free capability at relatively low cost. However, its separate dual core structure is a weakness when facing concentrated EM attacks where a tiny EM probe can be precisely positioned closer to one of the two cores. In this paper, we present an PA-DPL dual-core interleaved structure to strengthen resistance against sophisticated EM attacks on Xilinx FPGA implementations. The main merit of the proposed structure is that every two routing in each signal pair are kept identical even the dual cores are interleaved together. By minimizing the distance between the complementary routings and instances of both cores, even the concentrated EM measurement cannot easily distinguish the minor EM field unbalance. In PA- DPL, EPE is avoided by compressing the evaluation phase to a small portion of the clock period, therefore, the speed is inevitably limited. Regarding this, we made an improvement to extend the duty cycle of evaluation phase to more than 40 percent, yielding a larger maximum working frequency. The detailed design flow is also presented. We validate the security improvement against EM attack by implementing a simplified AES co-processor in Virtex-5 FPGA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tests used to simulate the separation of the lower stage of the Ariane Vehicle Equipment Bay (VEB) were carried out on a flat full scale model. Theoretical studies carried out prior to testing are described. Three different mathematical methods, finite element, component element, and wave propagation, were used. Comparison of the predicted theoretical results with the actual test results is planned.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the theoretical method and the modelling problems on the analysis of the Pyrotechnic Shock Propagation in the Vehicle Equipment Bay Structure of the ARIANE 5 during the separation of the upper stage. This work has been developed under a contract with the Spanish Firm Construcciones Aeronáuticas S.A. From all the analysis and the studies it can be concluded that: 1.- The mathematical method used for the study of the pyrotechnic shock phenomena is very well suited for conducting parametric studies. 2.- A careful model of the structure should be developed taking into account the realistic stiffness and dissipation properties at the junctions. 3.- The load produced by the pyrotechnic device should be carefully calibrated to reach a good agreement between theoretical and test results. 4.- In any case with the adquired experience it can be said that with the modelling of continuous elements the order of magnitude of the accelerations can be predicted with the accuracy needed in practical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theoretical improvements performed since the last spacecraft and mechanical testing conference on the study of the pyrotechnic shock phenomena produced during the separation of the lower stage of the Ariane 5 Vehicle Equipment Bay (VEB) structure are described. The first theoretical approach used was based on the wave propagation method, including axial and shear waves. The method was changed, in order to capture the bending effects, as well as the influence of the frequency dependent damping values. In addition to the development of the theoretical method, efforts were made to improve the criteria used to model the structure. Comparison of the theoretical predictions with the test results of a flat test sample 1 m width, as well as a preliminary test performed on a small sample, are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The existence of discontinuities within the double-adiabatic Hall-magnetohydrodynamics (MHD) model is discussed. These solutions are transitional layers where some of the plasma properties change from one equilibrium state to another. Under the assumption of traveling wave solutions with velocity C and propagation angle θ with respect to the ambient magnetic field, the Hall-MHD model reduces to a dynamical system and the waves are heteroclinic orbits joining two different fixed points. The analysis of the fixed points rules out the existence of rotational discontinuities. Simple considerations about the Hamiltonian nature of the system show that, unlike dissipative models, the intermediate shock waves are organized in branches in parameter space, i.e., they occur if a given relationship between θ and C is satisfied. Electron-polarized (ion-polarized) shock waves exhibit, in addition to a reversal of the magnetic field component tangential to the shock front, a maximum (minimum) of the magnetic field amplitude. The jumps of the magnetic field and the relative specific volume between the downstream and the upstream states as a function of the plasma properties are presented. The organization in parameter space of localized structures including in the model the influence of finite Larmor radius is discussed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Una apropiada evaluación de los márgenes de seguridad de una instalación nuclear, por ejemplo, una central nuclear, tiene en cuenta todas las incertidumbres que afectan a los cálculos de diseño, funcionanmiento y respuesta ante accidentes de dicha instalación. Una fuente de incertidumbre son los datos nucleares, que afectan a los cálculos neutrónicos, de quemado de combustible o activación de materiales. Estos cálculos permiten la evaluación de las funciones respuesta esenciales para el funcionamiento correcto durante operación, y también durante accidente. Ejemplos de esas respuestas son el factor de multiplicación neutrónica o el calor residual después del disparo del reactor. Por tanto, es necesario evaluar el impacto de dichas incertidumbres en estos cálculos. Para poder realizar los cálculos de propagación de incertidumbres, es necesario implementar metodologías que sean capaces de evaluar el impacto de las incertidumbres de estos datos nucleares. Pero también es necesario conocer los datos de incertidumbres disponibles para ser capaces de manejarlos. Actualmente, se están invirtiendo grandes esfuerzos en mejorar la capacidad de analizar, manejar y producir datos de incertidumbres, en especial para isótopos importantes en reactores avanzados. A su vez, nuevos programas/códigos están siendo desarrollados e implementados para poder usar dichos datos y analizar su impacto. Todos estos puntos son parte de los objetivos del proyecto europeo ANDES, el cual ha dado el marco de trabajo para el desarrollo de esta tesis doctoral. Por tanto, primero se ha llevado a cabo una revisión del estado del arte de los datos nucleares y sus incertidumbres, centrándose en los tres tipos de datos: de decaimiento, de rendimientos de fisión y de secciones eficaces. A su vez, se ha realizado una revisión del estado del arte de las metodologías para la propagación de incertidumbre de estos datos nucleares. Dentro del Departamento de Ingeniería Nuclear (DIN) se propuso una metodología para la propagación de incertidumbres en cálculos de evolución isotópica, el Método Híbrido. Esta metodología se ha tomado como punto de partida para esta tesis, implementando y desarrollando dicha metodología, así como extendiendo sus capacidades. Se han analizado sus ventajas, inconvenientes y limitaciones. El Método Híbrido se utiliza en conjunto con el código de evolución isotópica ACAB, y se basa en el muestreo por Monte Carlo de los datos nucleares con incertidumbre. En esta metodología, se presentan diferentes aproximaciones según la estructura de grupos de energía de las secciones eficaces: en un grupo, en un grupo con muestreo correlacionado y en multigrupos. Se han desarrollado diferentes secuencias para usar distintas librerías de datos nucleares almacenadas en diferentes formatos: ENDF-6 (para las librerías evaluadas), COVERX (para las librerías en multigrupos de SCALE) y EAF (para las librerías de activación). Gracias a la revisión del estado del arte de los datos nucleares de los rendimientos de fisión se ha identificado la falta de una información sobre sus incertidumbres, en concreto, de matrices de covarianza completas. Además, visto el renovado interés por parte de la comunidad internacional, a través del grupo de trabajo internacional de cooperación para evaluación de datos nucleares (WPEC) dedicado a la evaluación de las necesidades de mejora de datos nucleares mediante el subgrupo 37 (SG37), se ha llevado a cabo una revisión de las metodologías para generar datos de covarianza. Se ha seleccionando la actualización Bayesiana/GLS para su implementación, y de esta forma, dar una respuesta a dicha falta de matrices completas para rendimientos de fisión. Una vez que el Método Híbrido ha sido implementado, desarrollado y extendido, junto con la capacidad de generar matrices de covarianza completas para los rendimientos de fisión, se han estudiado diferentes aplicaciones nucleares. Primero, se estudia el calor residual tras un pulso de fisión, debido a su importancia para cualquier evento después de la parada/disparo del reactor. Además, se trata de un ejercicio claro para ver la importancia de las incertidumbres de datos de decaimiento y de rendimientos de fisión junto con las nuevas matrices completas de covarianza. Se han estudiado dos ciclos de combustible de reactores avanzados: el de la instalación europea para transmutación industrial (EFIT) y el del reactor rápido de sodio europeo (ESFR), en los cuales se han analizado el impacto de las incertidumbres de los datos nucleares en la composición isotópica, calor residual y radiotoxicidad. Se han utilizado diferentes librerías de datos nucleares en los estudios antreriores, comparando de esta forma el impacto de sus incertidumbres. A su vez, mediante dichos estudios, se han comparando las distintas aproximaciones del Método Híbrido y otras metodologías para la porpagación de incertidumbres de datos nucleares: Total Monte Carlo (TMC), desarrollada en NRG por A.J. Koning y D. Rochman, y NUDUNA, desarrollada en AREVA GmbH por O. Buss y A. Hoefer. Estas comparaciones demostrarán las ventajas del Método Híbrido, además de revelar sus limitaciones y su rango de aplicación. ABSTRACT For an adequate assessment of safety margins of nuclear facilities, e.g. nuclear power plants, it is necessary to consider all possible uncertainties that affect their design, performance and possible accidents. Nuclear data are a source of uncertainty that are involved in neutronics, fuel depletion and activation calculations. These calculations can predict critical response functions during operation and in the event of accident, such as decay heat and neutron multiplication factor. Thus, the impact of nuclear data uncertainties on these response functions needs to be addressed for a proper evaluation of the safety margins. Methodologies for performing uncertainty propagation calculations need to be implemented in order to analyse the impact of nuclear data uncertainties. Nevertheless, it is necessary to understand the current status of nuclear data and their uncertainties, in order to be able to handle this type of data. Great eórts are underway to enhance the European capability to analyse/process/produce covariance data, especially for isotopes which are of importance for advanced reactors. At the same time, new methodologies/codes are being developed and implemented for using and evaluating the impact of uncertainty data. These were the objectives of the European ANDES (Accurate Nuclear Data for nuclear Energy Sustainability) project, which provided a framework for the development of this PhD Thesis. Accordingly, first a review of the state-of-the-art of nuclear data and their uncertainties is conducted, focusing on the three kinds of data: decay, fission yields and cross sections. A review of the current methodologies for propagating nuclear data uncertainties is also performed. The Nuclear Engineering Department of UPM has proposed a methodology for propagating uncertainties in depletion calculations, the Hybrid Method, which has been taken as the starting point of this thesis. This methodology has been implemented, developed and extended, and its advantages, drawbacks and limitations have been analysed. It is used in conjunction with the ACAB depletion code, and is based on Monte Carlo sampling of variables with uncertainties. Different approaches are presented depending on cross section energy-structure: one-group, one-group with correlated sampling and multi-group. Differences and applicability criteria are presented. Sequences have been developed for using different nuclear data libraries in different storing-formats: ENDF-6 (for evaluated libraries) and COVERX (for multi-group libraries of SCALE), as well as EAF format (for activation libraries). A revision of the state-of-the-art of fission yield data shows inconsistencies in uncertainty data, specifically with regard to complete covariance matrices. Furthermore, the international community has expressed a renewed interest in the issue through the Working Party on International Nuclear Data Evaluation Co-operation (WPEC) with the Subgroup (SG37), which is dedicated to assessing the need to have complete nuclear data. This gives rise to this review of the state-of-the-art of methodologies for generating covariance data for fission yields. Bayesian/generalised least square (GLS) updating sequence has been selected and implemented to answer to this need. Once the Hybrid Method has been implemented, developed and extended, along with fission yield covariance generation capability, different applications are studied. The Fission Pulse Decay Heat problem is tackled first because of its importance during events after shutdown and because it is a clean exercise for showing the impact and importance of decay and fission yield data uncertainties in conjunction with the new covariance data. Two fuel cycles of advanced reactors are studied: the European Facility for Industrial Transmutation (EFIT) and the European Sodium Fast Reactor (ESFR), and response function uncertainties such as isotopic composition, decay heat and radiotoxicity are addressed. Different nuclear data libraries are used and compared. These applications serve as frameworks for comparing the different approaches of the Hybrid Method, and also for comparing with other methodologies: Total Monte Carlo (TMC), developed at NRG by A.J. Koning and D. Rochman, and NUDUNA, developed at AREVA GmbH by O. Buss and A. Hoefer. These comparisons reveal the advantages, limitations and the range of application of the Hybrid Method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neutron diffraction data of DyCrO4 oxide, prepared at 4 GPa and 833 K from the ambient pressure zircon-type, reveal that crystallize with the scheelite-type structure, space group I41/a. Accompanying this structural phase transition induced by pressure the magnetic properties change dramatically from ferromagnetism in the case of zircon to antiferromagnetism for the scheelite polymorph with a T N= 19 K. The analysis of the neutron diffraction data obtained at 1.2 K has been used to determine the magnetic structure of this DyCrO4-scheelite oxide which can be described with a k = [0, 0, 0] as propagation vector, where the Dy and Cr moments are lying in the ab-plane of the scheelite structure. The ordered magnetic moments are 10 µB and 1 µB for Dy+3 and Cr+5 respectively